Introduction to P6KE200A Diode Datasheet, Pinout, Features & Equivalents

Hi everyone! Hope you’re well today. I welcome you on board. In this post today, I’ll walk you through the Introduction to P6KE220A.

The P6KE200A is a transient voltage suppressor (TVS) diode that uses clamping action to provide circuit protection against overvoltage. It is widely used in low-voltage supplied ICs and MOS technology due to its quick response to transient overvoltages. For P6KE200A the clamping voltage is 246V and the breakdown voltage is ranged from 190V to 210V.

I suggest you read this entire post till the end as I’ll detail the complete introduction to P6KE200A covering datasheet, pinout, features equivalents, and applications of this component P6KE200A.

Introduction to P6KE200A

  • The P6KE200A is a transient voltage suppressor (TVS) device mainly used to cancel the overvoltage effects on electrical circuits and semiconductor materials. It is applied to nullify the overvoltage effects in MOS technology and low-voltage-supplied ICs.
  • P6KE200A is connected in parallel with the electrical circuit that needs to be protected against overvoltage.
  • For unidirectional functioning, you can identify the cathode side with a gray color band on it while the other side is the anode.
  • For bi-directional functioning, however, this diode comes with the same characteristics in both negative and positive directions, hence, in that case, it doesn’t matter how you install this component into your project.
  • I-V characteristics of the P6KE200A are given below.
  • In P6KE200A, P6KE is known as the series name, 200 defines the diode operating voltage, while A means unidirectional.

P6KE200A Datasheet

Before applying this component to your electrical project, it’s better to go through the datasheet of the component that details the main characteristics of the device.

You can download the datasheet of p6ke200a by clicking the link below.

P6KE200A Pinout

The following figure shows the pinout diagram of P6KE200A.

  • This tiny component is a two-pin device composed of two terminals called anode and cathode. The anode side is positive and the cathode side is negative.
  • The current leaves the diode from the cathode side and it enters the diode from the anode terminal.

P6KE200A Features

The following are the features of P6KE200A.

  • Working Voltage = 171 V
  • Glass P6KE200Assivated junction
  • Halogen-free and RoHS compliant
  • 600W peak pulse caP6KE200Ability at 10Ã
  • Operating Temperature Range = -65 to 175 °C
  • Breakdown Voltage = 190V to 210V
  • Low incremental surge resistance
  • High-temperature soldering guaranteed: 265°C./10 seconds/
  • Current - Peak Pulse = 2.2A
  • Case P6KE200Ackaging = DO-204AC
  • Clamping Voltage = 274 V
  • Excellent clamping caP6KE200Ability
  • Fast response time: typically less than 1.0ps

P6KE200A Alternative

P6KE180A is an alternative to P6KE200A.

Other TVS diodes that can replace P6KE200A are SM712, SRV05, SMBJ12CA

P6KE200A Applications

  • Used in data and signal lines
  • Used for clamping in low-energy circuits
  • Used in telecommunication Equipment
  • Employed in microprocessor and MOS memory
  • Employed in AC/DC power lines

That was all about the Introduction to P6KE200A. If you have any questions, you can ask me in the section below, I’d love to help you the best way I can. Feel free to share your suggestions around the content we share so we keep sharing valuable content customized to your exact needs and requirements. Thank you for reading the article.

Introduction to SR560 Schottky Diode Datasheet, Pinout, Features & Applications

Hi Friends! Hope you’re well today. I welcome you on board. Happy to see you around. In this post today. I’ll detail the Introduction to SR560. The SR560 is a Schottky diode mainly employed in extremely fast switching applications. High surge current capability device, SR560 is highly efficient and reliable and comes with a maximum recurrent peak reverse voltage of 60V while the maximum RMS voltage is 42V. Read this post all the way through, as I’ll discuss the Introduction to SR560 covering datasheet, pinout, features, and applications. Let’s get started.

Introduction to SR560

  • The SR560 is a Schottky diode mainly employed in extremely fast switching purposes.
  • It is also called a hot-carrier diode that comes with low forward drop voltage.
  • It is available in the DO-201AD package with a maximum DC blocking voltage of 60V. The storage temperature range is -55 to 150 C while the average maximum forward current is 5A.
  • The SR560 carries two terminals called anode and cathode.
  • Low power loss and low-cost device, SR560 carries a low forward voltage drop. It weighs only 1.1g and the colored band on the device indicates the cathode terminal while the other end is the anode terminal.
  • Schottky diode is also called a hot-carrier diode. This diode exhibits low electronic energy in an unbiased condition. A barrier is formed due to this low energy that restricts the electron movement. Since a barrier is constructed, a reason this device is also called a hot carrier diode.
  • Both Schottky diode and common diode are the same when it comes to the flow of current i.e. both favor the current flow in one direction and restrict it in opposite direction.
  • These diodes are different in terms of the voltage needed to power up these diodes.
  • Both diodes require 2V DC source voltage where the Schottky diode needs only 0.3V, leaving behind 1.7V to power up the diode. And common diode requires only 0.7V, leaving behind 1.3V to power up the diode.

SR560 Datasheet

Before applying this component to your electrical project, it’s wise to get a hold of the datasheet of the component that details the main characteristics of the device. You can download the datasheet of SR560 by clicking the link below. SR560 Pinout The following figure shows the pinout diagram of SR560.
  • This high efficient component is a two-pin device. Pins are also called terminals used for the external connection with the electrical circuit.
  • One terminal is called anode while the other is called the cathode. The anode pin is positive and is the place where the current enters the device while the cathode pin is negative and is the area from where the current leaves the diode.
  • It is important to note that the current flows from the anode terminal to the cathode terminal.
  • Moreover, this is a unidirectional device that means current flows in one direction only i.e. from anode to cathode.
  • You cannot force this device to conduct in both directions. Doing so will damage the component.

SR560 Features

  • High surge current capability
  • High current capability
  • Package = DO-201AD
  • Polarity = Cathode band
  • Mounting position = Any
  • Repetitive peak reverse voltage = 60V
  • Peak reverse current = 0.5 mA
  • Low cost and high reliability
  • Low forward voltage drop
  • Low power loss and highly efficient

SR560 Schottky Diode Construction

When metal is combined with the semiconductor material, they produce Schottky diode. When metals like platinum, tungsten, chromium, and molybdenum are combined with the n-type material they constitute Schottky diode. The Schottky diode forward drop voltage is dependent on the nature of metal and semiconductor material employed in the formation of this diode. Schottky diode is a two-pin device where one pin is called an anode and the other pin is called a cathode. The anode pin is positive and is composed of metal while the cathode pin is negative and is made of n-type semiconductor material. You can also apply p-type semiconductor material for the making of Schottky diode, but they carry low forward drop voltage compared to the n-type material.

SR560 Applications

  • Employed in high-frequency and low voltage inverters.
  • Used in polarity protection and DC/DC converters applications.
  • Used in freewheeling and logic circuits.
  • Used in sample-and-hold circuits.
  • Used in solar systems and radio frequency applications.
  • Incorporated for signal detection and extremely fast switching applications.
  • Used to control the electronic charge.
That’s all for today. I hope you find this article helpful. If you have any question, you can approach me in the comment section below, I’d love to help you the best way I can. Feel free to share your valuable suggestions around the content we share so we keep producing quality content. Thank you for reading the article.
Syed Zain Nasir

I am Syed Zain Nasir, the founder of <a href=https://www.TheEngineeringProjects.com/>The Engineering Projects</a> (TEP). I am a programmer since 2009 before that I just search things, make small projects and now I am sharing my knowledge through this platform.I also work as a freelancer and did many projects related to programming and electrical circuitry. <a href=https://plus.google.com/+SyedZainNasir/>My Google Profile+</a>

Share
Published by
Syed Zain Nasir