Basic knowledge of machining

Datum.

Parts are composed of a number of surfaces, each surface has a certain size and mutual position requirements. The requirements of the relative position between the surfaces of the parts include two aspects: the dimensional accuracy of the distance between the surfaces and the relative position accuracy (such as axes, parallelism, verticality and circular runout, etc.).

The study of the relative position relationship between the part surfaces can not be separated from the datum, and the position of the part surface can not be determined without a clear datum. In its general sense, the datum is the point, line and surface on the part on which the position of other points, lines and surfaces are determined. According to its different functions, the benchmark can be divided into two categories: design benchmark and process benchmark.

1. Design datum.

A datum is a point, line, or surface from which measurements are made. In the case of the piston, the design datum refers to the centerline of the piston and the centerline of the pinhole.

2. Process datum.

The datum used by parts in the process of machining like turning and assembly is called process datum. According to different uses, the processed datum is divided into positioning datum, measuring datum and assembly datum.

1) Positioning datum: The datum is the point of reference from which all other measurements are taken. When positioning the datum, it is important to take into account the size and shape of the workpiece, as well as the type of machining operation being performed. According to the different positioning elements, the most commonly used are the following two categories:

Automatic centering positioning: such as three-claw chuck positioning.

To make a positioning sleeve, such as a stop plate, into a positioning sleeve.

Others are positioned in the V-shaped frame, positioned in the semicircular hole, and so on.

2) measuring datum: A measuring datum is a physical reference point used to take measurements. The datum provides a starting point from which all other measurements are taken. without a measuring datum, it would be difficult to take accurate measurements.

3) Assembly datum: the datum used to determine the position of the part in the assembly or product during assembly, called assembly datum.

Installation of workpieces.

In order to produce a surface that meets the specified technical requirements on a certain part of the workpiece, the workpiece must occupy a correct position relative to the tool on the machine tool before machining. This process is often referred to as the "positioning" of the artifact. After the workpiece is positioned, due to the action of cutting force, gravity and so on, a certain mechanism should be used to "clamp" the workpiece so that its determined position remains unchanged. The process of holding the workpiece in the correct position on the machine tool and clamping the workpiece is called "installation".

The quality of workpiece installation is an important issue in machining, which not only directly affects the machining accuracy, the speed and stability of workpiece installation, but also affects the productivity. In order to ensure the relative position accuracy between the machined surface and its design datum, the design datum of the machined surface should occupy a correct position relative to the machine tool when the workpiece is installed. For example, in the precision turning ring groove process, in order to ensure the circular run out of the ring groove bottom diameter and the skirt axis, the design basis of the workpiece must be coincident with the axis line of the machine tool spindle.

[caption id="attachment_171666" align="aligncenter" width="800"] Design & Engineering Verification[/caption]

When machining parts on different machine tools, there are different installation methods. The installation methods can be summarized as direct alignment method, marking alignment method and fixture installation method.

The main results are as follows:

1) when using this method, the correct position of the workpiece on the machine tool is obtained through a series of attempts. The specific way is to install the workpiece directly on the machine tool, use the dial meter or the needle on the needle plate, visually correct the correct position of the workpiece, and correct it at the same time until it meets the requirements.

The positioning accuracy and speed of direct alignment depend on the accuracy of alignment, the method of alignment, the tools of alignment and the technical level of workers. Its disadvantage is that it takes more time, the productivity is low, and it has to be operated on the basis of experience and requires high skills of workers, so it is only used in single-piece and small batch production. Such as hard to imitate the shape of the alignment belongs to the direct alignment method. .

2) the method of line alignment this method is a method of using a needle on a machine tool to correct the workpiece according to the line drawn on the blank or semi-finished product, so that it can get the correct position. It is obvious that this method requires an additional marking process. The drawn line itself has a certain width, and there is a marking error when marking, and there is also an observation error when correcting the position of the workpiece, so this method is mostly used in the rough machining of small batch production, low blank precision, and large workpieces that are not suitable for the use of fixtures. For example, the determination of the pin hole position of the two-stroke product is to use the marking method of the indexing head to correct it.

3) fixture installation method: the process equipment used to clamp the workpiece and make it occupy the correct position is called machine tool fixture. The fixture is an additional device of the machine tool, and its position relative to the tool on the machine tool has been adjusted in advance before the workpiece is installed, so it is no longer necessary to find the correct position one by one when machining a batch of workpieces, which can ensure the technical requirements of machining, which saves both labor and trouble. It is an efficient positioning method and is widely used in batch and mass production. Our current piston processing is the fixture installation method used.

  1. The operation of keeping the positioning position of the workpiece in the machining process after positioning is called clamping. The device in the fixture that keeps the positioning position of the workpiece in the machining process is called the clamping device.
  2. The clamping device should meet the following requirements: when clamping, the positioning of the workpiece should not be destroyed; after clamping, the position of the workpiece in the machining process should not change, and the clamping should be accurate, safe and reliable; the clamping action is fast, easy to operate and labor-saving; the structure is simple and easy to manufacture.
  3. matters needing attention when clamping: the clamping force should be appropriate, too much will cause deformation of the workpiece, and too small will cause displacement in the machining process and destroy the positioning of the workpiece.
 

Mechanical concept of roughness

Surface roughness is a measure of the irregularities in the surface of a material. It can be caused by a variety of factors, including manufacturing defects, wear and tear, and environmental exposure. Surface roughness can have a significant impact on the performance of a material, as it can affect its resistance to wear, corrosion, and other forms of damage. The term "roughness" refers to both the size and frequency of the irregularities on the surface of a material. The size of the irregularities is typically measured in micrometers or nanometers, while the frequency is typically measured in cycles per inch (CPI).

Surface roughness can also be characterized by its wavelength, which is the average distance between adjacent peaks or troughs. The most common method of measuring surface roughness is with a profilometer, which uses a stylus to trace the contours of the surface and generate a profile. The profile is then analyzed to determine the roughness parameters.

[caption id="attachment_171667" align="aligncenter" width="800"] Engineering Tolerances[/caption]

Roughness representation.

There are 3 kinds of surface roughness height parameters:

  1. Arithmetic mean deviation of contours Ra.

Within the sampling length, the arithmetic mean of the absolute distance between the point on the contour line along the measuring direction (Y direction) and the baseline.

  1. Micro-roughness 10-point height Rz.

It refers to the sum of the average peak height of the five maximum contours and the average valley depth of the five maximum contours within the sampling length.

  1. Maximum height of contour Ry.

The distance between the top line of the highest peak and the bottom line of the lowest valley within the sampling length.

Nowadays, Ra is mainly used in the general machinery manufacturing industry.

The influence of Roughness on the performance of parts.

The surface quality of the machined workpiece directly affects the physical, chemical and mechanical properties of the machined workpiece, and the working performance, reliability and service life of the product depend to a large extent on the surface quality of the main parts. Generally speaking, the surface quality requirements of important or key parts are higher than ordinary parts, because the parts with good surface quality will greatly improve their wear resistance, corrosion resistance and fatigue resistance.

Surface roughness is an important consideration in many engineering applications, as it can have a significant impact on the performance of a component or system. For example, surface roughness can affect the tribological properties of a material, such as its friction and wear resistance. It can also affect the ability of a material to resist corrosion and other forms of damage.

In addition, surface roughness can influence the optical properties of a material, such as its reflectivity and transmittance. Surface roughness is also a concern in many manufacturing processes, as it can cause defects in the finished product. For example, surface roughness can cause problems with adhesion, machining, and metallurgy. Surface roughness can also make it difficult to achieve desired tolerances in manufacturing processes. As a result, surface roughness is an important factor to consider in the design and manufacture of components and systems.

There are many ways to reduce surface roughness, including using methods such as honing, grinding, lapping, and polishing. In addition, surface treatments such as electroplating, ion implantation, and vapor deposition can also be used to improve the surface smoothness of the material.

Cutting fluid.

1) the function of cutting fluid.

Cooling effect: the cutting heat can take away a large amount of cutting heat, improve the heat dissipation conditions, and reduce the temperature of the tool and the workpiece, thus prolonging the service life of the tool and preventing the dimensional error caused by thermal deformation of the workpiece.

Lubrication: the cutting fluid can penetrate between the workpiece and the tool, forming a thin adsorption film in the tiny gap between the chip and the tool, reducing the friction coefficient, so it can reduce the friction between the chip and the workpiece, reducing the cutting force and cutting heat, reduce the tool wear and improve the surface quality of the workpiece, which is especially important for finishing and lubrication.

Cleaning function: the tiny chips produced in the cleaning process are easy to adhere to the workpiece and the tool, especially when drilling deep holes and twisted holes, the chips are easy to block in the chip-holding groove, affecting the surface roughness of the workpiece and the service life of the tool. The use of cutting fluid can wash away the chips quickly, so that the cutting can be carried out smoothly.

2) types: there are two kinds of common cutting fluids.

Emulsion: mainly plays a cooling role, emulsion is made by diluting emulsified oil with 15-20 times water, this kind of cutting fluid has high specific heat, low viscosity, good fluidity and can absorb a lot of heat. This kind of cutting fluid is mainly used to cool tools and workpieces, improve tool life and reduce thermal deformation. The emulsion contains more water and has poor lubrication and antirust function.

Cutting oil: the main component of cutting oil is mineral oil, this kind of cutting fluid has low specific heat, high viscosity and poor fluidity, and mainly plays the role of lubrication. Mineral oil with low viscosity is commonly used, such as engine oil, light diesel oil, kerosene and so on.

Everything You Need to Know About MIG Welding

What Is MIG Welding?

MIG welding is the process of joining metal parts by melting the base metal and fusing it with a filler metal. The name is derived from the phrase "Metal Inert Gas," which is commonly used. The process involves using an arc between an electrode and the workpiece, which melts the base metal and fuses it with the filler metal.

Mig welding is an extremely versatile process that can be used to create virtually any shape or configuration of the welded joint. You can also use it for many different metals, including low carbon steel, stainless steel, and aluminum alloys.

Mig Welding Equipment

The MIG welding equipment you'll need includes:

Torch

The torch supplies the heat needed to melt the wire. It has a handle, an on/off trigger, and a tip where the wire feeds. The torch also has an air regulator that controls how much oxygen is mixed with natural gas going into the burner head (the part of the torch where you attach your wire). You need to use this setting depending on what type of metal you're working with.

Gas Cylinder

This holds the compressed gas used as fuel for the welding process. Welding torch to combust inside and heats up when activated by pressing down on your trigger switch or button. You'll also see these bottles or tanks. Still, they're all essentially identical in function—they vary slightly in size based on their gas capacity.

Welder’s Helmet

Protects your eyes from any spark produced by friction during MIG welding processes such as spatter creation during stick electrode usage.

Welding wire

The thickness of welding wire is measured in thousands of an inch (thou) or mils. The most common sizes of welding wire are as follows: 22-gauge (0.023"), 24-gauge (0.024"), 26-gauge (0.025"), and 28-gauge (0.028")

The gauge refers to the thickness of the wire and the higher the number, the thinner it is and the less heat it can take before melting or burning out on you when you're trying to weld with it.

MIG Welder Settings

You can adjust these settings to improve the quality of your weld or reduce the amount of heat you apply to the weld.

Welding Wire Diameter

This controls how much material is deposited in each pass and determines how much heat will be required to melt it. A smaller diameter wire requires less energy and produces a cleaner weld, but it also requires more passes to build up a good bead.

Feed Speed

This is how quickly you move through the molten pool when welding; too fast and you'll get porosity; too slow and it may take longer than necessary for each pass due to poor cooling.

With the Right Equipment, You Can Get Started on Some Solid Metalwork

MIG welding is a great way to get started in welding. It's really easy, and it's safe for beginners. You can use Mig welding for various projects, including light steelwork, ironmongery, and aluminum.

Mig welders are versatile, meaning they can handle almost any metal you want to weld with their different settings. They also include gas supplies that provide the shielding gas needed during the process, which makes them good value for money compared with other welder types.

Mig welding is a skill that anyone can pick up with only a little time and practice. If you're interested in learning how to weld but don't know where to begin, here are a few options:

  • You can start with instructional videos on Youtube; many makers have uploaded videos that walk new welders step-by-step. The most famous one is *How To Weld Like A Pro - Using Gas Metal Arc Welding (Mig)*, by the YouTube channel OneMinuteUkeleleLessons.
  • Consider finding an experienced professional welder who's willing to teach you one-on-one. Most welders are happy with any excuse to talk shop! They'll give you tips that you couldn't find even in the most detailed book.
  • Take a course at your local community college or trade school. This could be an excellent way of getting basic hands-on experience in ideal conditions before moving on to more difficult tasks.

MIG Welding Frequently Asked Questions

Can You Use a TIG Welder as a MIG welder?

Yes, you can use a TIG welder as a MIG welder. If your TIG welder has adjustable amperage, you can follow the steps listed above. TIG welders tend to have higher amperage settings than MIG welders, but they still require the same power as a MIG welder. Since a TIG welder is more versatile, it's worth investing in one if you're regularly using welding equipment or want more control over your project.

How does a flux core welder work?

The machine uses a hollow wire and is filled with flux. Flux is the material that covers the weld and protects it from contamination when welding. You can use a flux core welder outdoors because the wind doesn't affect the weld because of the flux inside the wire. A flux core welder can also be used indoors with no gas if welding thicker materials (1/2" or less). It isn't recommended to use these machines for thinner materials on higher amperage settings, as there will be too much spatter and smoke

Does a MIG welder need gas?

This is a common question, and the answer is: yes, but it depends on the type of wire you are using. Flux core wire doesn't need shielding gas, while solid welding wire does need shielding gas.

The type of work you do will determine whether you need a machine that uses shielding gas or flux core wire. For example, if you are working outdoors or inside with wind, you can use flux core wire since it does not require an external gas cylinder.

Syed Zain Nasir

I am Syed Zain Nasir, the founder of <a href=https://www.TheEngineeringProjects.com/>The Engineering Projects</a> (TEP). I am a programmer since 2009 before that I just search things, make small projects and now I am sharing my knowledge through this platform.I also work as a freelancer and did many projects related to programming and electrical circuitry. <a href=https://plus.google.com/+SyedZainNasir/>My Google Profile+</a>

Share
Published by
Syed Zain Nasir