Throughout our lives, we've relied on Radio and tv stations to keep us engaged. While we're on the subject of contradictions, it's also fair to say that these Stations can become tedious at times due to the RJ rambling on about nothing or annoying advertisements, and this may have left you wondering why you can't own a Radio station to broadcast your data over short distances.
Almost any electronics technician uses coils and other hardware to make an FM transmitter, although the tuning process is time-consuming and difficult. Setting up your FM station and going live in your neighborhood shouldn't take more than 30 minutes using an RPi. If you use the right antenna, you must be able to transmit to your school or community within 50 meters. Wow, that's interesting! So, let's get started right now.
Caution: This project is an education project and should not be abused in any way that might harm or inconvenience anyone. Interfering with neighboring FM frequencies is illegal, so please exercise caution when using this feature. In the event of any mishaps, we take no responsibility for them.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Jumper Wires | Amazon | Buy Now | |
2 | Raspberry Pi 4 | Amazon | Buy Now |
Raspberry Pi
Internet connection
Microphone
An enthusiastic RJ
Your RPi should already be running an os and be able to establish a network connection. If you haven't done so already, go through the instructions on how to use a raspberry pi.
A virtual server such as VNC, or a putty terminal window, is assumed to be accessible to you at all times. For the sake of this tutorial, we will run the program on RPi using the putty terminal session.
A method or procedure known as FM involves changing the carrier signal frequencies to match the frequencies of the modulated signal to encode information on a specific signal. Since data must be conveyed after being transformed into an electrical signal, a modulation signal is simply that.
A carrier's signal is transformed by an original signal in the modulation technique, which uses a methodology similar to amplitude modulation. On the other hand, FM maintains or maintains a steady signal loudness.
Fm is primarily used to decrease noise as well as the size of antennae, respectively. We know that a bigger antenna is required to send reduced frequency signals, whereas a smaller one is necessary to broadcast high-frequency signals.
Therefore, the sound signals are transformed into high-frequency radio waves and broadcast using the FM technique. Once more, the demodulation circuit on the receiver's side converts the high-frequency radio transmission frequency into the original understandable audio signal.
There is little interference since different signals are transmitted over a specific channel using separate wavelengths. So many folks can converse simultaneously and unhindered in a large metropolis.
The construction of a long-range FM transmitter has long been on my bucket list of cool things. I've been so intrigued by some of the transmitter's uses, particularly since I was a kid, and spent much of my time fantasizing about how awesome it would be to have a few of the technology and technologies used in espionage movies. So lately, while reviewing one of my residence automation projects by using RPi and the motion package library, I felt it would be cool to add audio to the deliverable and stream live, so in addition to the multimedia feedback provided by the RPi, I could also get sound feedback out from area under monitoring. Even while this FM transmitter would not let me hear distantly (a range exceeding 10 kilometers), it will at least enable me to maintain an "ear" on events while I am about the property; then, after building it, I would have accomplished a few of the objectives that the younger me had set out to attain. It took me a few days ago, but I eventually got the motivation to make one, and I'll show you how to do it in today's post.
To avoid violation of policies of some countries, this experiment is being conducted solely for educational and scientific purposes. Keep the FM transmission at a low range and make sure it is built in compliance with applicable laws of one’s nation and therefore does not induce a disruption to others. This is essential. For any mishaps, I take no responsibility.
Using the concepts of the modulated signal, an FM transmitter can transmit the audio it receives from its input. Most FM transmitters are constructed in the manner depicted in the diagram below.
An amplification is frequently included in the transmitters because the transmission power of audio input is relatively low. This is done by utilizing an oscillator component to produce the carrier signal, which is then combined with an audio stream to generate a modulated signal that can be transmitted. When it comes to communicating, the low-impedance modulation signal is fed via a power amplifier to get to the antenna.
The electrical component should be connected as illustrated in the following FM transmitter diagram.
In this photo, you can see the prototype version of the FM radio transmitter.
The first transistors amplify the mic's output signals to a level suitable for transmission because the mic's output waveform is typically modest. In addition to amplification, the transmitter must also modulate. After that, the boosted audio signal is combined with the desired transmission carrier frequency to create a final signal. Because there is no visible output to identify the precise frequency where the transmitters are working, you may need to modify the FM transceiver radio well within the frequency range stated above to get the transmission frequency. This carrier signal can be differed using a 20pF capacitor attached to the inductor. The traditional spectral range of this specific design would be between 88MegaHeartz and 108MegaHertz. Once the carrier signal has modulated the audio signal, it is sent to the antenna, where it is received.
The resistors and capacitors used aren't set in stone, so you can experiment with them to get the best performance out of the transmitters.
Several other uses for this design aren't mentioned above, such as baby monitors or school address systems. Before constructing any of those practical items, please remember to check your local laws.
How can RPi, a board designed to serve as a development platform for microprocessors, do all of this? What if I don't need extra hardware to use the board as an FM station?
To prevent interference problems, each CPU will have a synchronized digital device. A signal known as a Spread-spectrum system clock, or SSCS is responsible for this Electromagnetic interference suppression. This frequency ranges from 1 MegaHeartz to 250 MegaHeartz, which fortunately fits well within the FM spectrum. We can make the Pi become an FM broadcaster by developing some code that uses the spread-spectrum clock frequency to modulate the frequencies. The Rpi Pi's GPIO pin 4 is where the frequency modulation will be sent. To use this pin as an antenna, we need a piece of standard wire attached to it no longer than 20 cm in length.
Otherwise, read on for instructions on accessing your pi through the Command window if you haven't already done so. Boot Raspberry Pi with an HDMI connection to a display and an input device once you've installed a new operating system.
Link your Raspberry to the network by searching for a network option on the Raspberry desktop. Then go to the raspberry menu, click raspberry settings, and activate the SSH connection afterward. On your Windows or MAC computer, reconnect your computer to the same network as your Raspberry Pi so that both devices may communicate with each other on the local area network. You're ready to begin now that you've had Putty installed and running. Enter the Raspberry Pi's Internet protocol address and press enter. If you don't know your PI's Internet address, go to the admin side of your router and see if it's 192.168.43.XXX or something similar. An open command prompt will appear and ask for your login and passcode if all is done correctly. The default login and passcode are pi and Raspberry, respectively. Press Enter to see the next screen after entering it.
GitHub provides the code needed to turn the Raspberry into a radio station. This page can be cloned directly into Raspberry; the application can be compiled and launched if you understand how to do so. Just follow the instructions below, and you'll be transmitting your audio files in no time.
Set up a new directory for our software files and put them there. Create a new guide by typing 'mkdir RPI FM' inside the command prompt, and then enter the folder using the word 'cd.'
mkdir PI_FM
cd PI_FM
We must now copy the application from GitHub and place it in the folder we just made. Since we've previously moved inside the folder, we can run the following command below to complete the task.
sudo git clone https://github.com/markondej/fm_transmitter
We'll need a C compiler and other tools to run the C program we just acquired. GCC and G++ are the tools for this code, and the software for compiling them is termed make. To obtain compilers, enter the code shown below. Once the file is downloaded, your display will appear like the one below.
sudo apt-get install GCC g++ make
Compiling the code is now a cinch. You can do this by going into the folder using the change directory 'cd' FM transmitter and then compiling the script with root user 'sudo make .'The screen below should appear once your code has been successfully compiled.
cd fm_transmitter
sudo make
Launching the system is the last step. The intensity for which we would like to transmit, and the identity of the audio recording we would like to play must be specified when the program is launched. Star wars.wav is the default sound file that will be retrieved together with the code. We'll play the Movie Theme song at a 100megahertz frequency for testing purposes. The launch line's syntactic structure is:
sudo ./fm_transmitter [-f frequency] [-r] filename
The channel will be 100 MegaHeartz long because we need to play the movie file at that frequency.
sudo ./fm_transmitter -f 100 -r star_wars.wav
After you have started the application and you see the playback message as seen above, we may link an antenna to a Gpio 4 of Raspberry, I use a standard connecting wire, and it works perfectly for me.
Take a Radio, then set it to 100MegaHeartz channel, and you'll be able to listen to the movie music being aired. After making sure it works, you may switch out the movie theme with any other music or audio recording you choose and broadcast it with the same instructions as in step 5.
While playing pre-recorded audio clips is entertaining, using this Pi 4 FM broadcast live audio would be much more enticing. With the help of the same tool, this is also possible. Just plug a mic into the Raspberry Pi's USB connection and modify the startup command-line interface. For additional information on this, please visit the GitHub homepage. Use the comment section of the forums if you run into any issues getting this to function.
When it comes to frequency modulation uses, radio transmission dominates the list. Due to its higher signal-to-noise ratios, it provides a significant advantage in a radio broadcast. That is, there is little radio wave interference as a result. This is the fundamental justification for why so most radio stations choose to transmit music via FM.
Furthermore, many of its applications can be found in telematics, geophysical prospecting, EEG, various radio technologies, music creation, and devices used for broadcasting video. Fm offers a significant benefit over all other modulations in a radio broadcast. It will resist radio wave disruptions far better than an equally powerful modulation amplitude (AM) signal because it has a higher signal-to-noise ratio. The majority of music is aired through FM radio for this important reason.
Radio transmission frequently uses pulse modulation technology. Each radio broadcast station has its frequency range, and all broadcaster station signals are sent over the same transmission system. We can adjust the Radio's tuning to link it to a specific radio channel.
Our pc connections also employ pulse modulation technology.
The pulse modulation method is employed in magnetic storage tape recording systems.
Radio Detecting And Range (RADAR) systems employ the pulse modulation approach.
Multimedia content communications, including voice/video broadcasts, also use pulse modulation technology. Most of the time, the sound is delivered over FM, and occasionally, the film is as well.
The modulated signal generates an electrical impulse for usage in electronic instruments.
The monitoring system also makes use of FM technology.
Audio is synthesized by using the FM technology in pc sound adapters.
Military communication systems like Walkie-Talkies employ pulse modulation technology.
Additionally, Bluetooth and Zigbee communications technology utilize the FM method.
The Broadcasting method is also employed in ambulance systems.
The satellite radio technology uses FM technology.
Due to its low electronic noise, this FM method is employed in two-way radio transmission.
Low noise distortion
A smaller antenna is needed for pulse modulation equipment.
The pulse modulation platform's can be built to consume little power. This is a significant benefit of the modulation technique.
The pulse modulation process is more efficient because the signal's amplitude is always consistent.
The frequencies modulation circuit has many intricate parts.
A carrier wave is required for the frequency modulation process.
Amplification modulation is appropriate for long transmission lines, while FM is not.
In this article, we have learned how to create a radio station using a raspberry pi 4 with a few very simple steps. We have broadcasted a Star Wars movie theme through this system, and now you can try many other forms of data to broadcast, including video and live sound using a mic to get more familiar with the system. The next tutorial will teach us how to build a temperature log.
Thank you for joining us for yet another session of this series on Raspberry Pi programming. In the previous tutorial, we built a motion sensor-based security system with an alarm. Additionally, we discovered how to use Twilio to notify the administrator whenever an alarm is triggered. However, in this tutorial, we'll learn how to build a stop motion film system using raspberry pi 4.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Breadboard | Amazon | Buy Now | |
2 | Jumper Wires | Amazon | Buy Now | |
3 | Raspberry Pi 4 | Amazon | Buy Now |
With a Raspberry Pi, Py, and a pi-camera module to capture images, you can create a stop-motion animated video. In addition, we'll learn about the various kinds of stop motion systems and their advantages and disadvantages.
The possibilities are endless when it comes to using LEGO to create animations!
Using your RPi to build a stop motion machine, you'll discover:
How to install and utilize the picamera module on the RPi
This article explains how to take photos with the Picamera library.
RPi GPIO Pushbutton Connection
Operate the picamera by pressing the GPIO pushbutton
How to use avconv to create a video clip from the command prompt
Raspberry Pi 4
Breadboard
Jumper wires
Button
It is recommended that FFmpeg comes preconfigured on the most recent release of Raspbian. If you don't have it, launch the terminal then type:
sudo apt-get update
sudo apt-get upgrade
sudo apt install FFmpeg
Inanimate things are given life through the use of a sequence of still images in the stop-motion cinematography technique. Items inside the frame are shifted slightly between every picture to create the illusion of movement when stitched together.
You don't need expensive gadgets or Graphics to get started in stop motion. That, in my opinion, is the most intriguing aspect of it.
If you've ever wanted to learn how to make a stop-motion video, you've come to the right place.
Product Animation can also be referred to as the frame-by-frame movement of things. You're free to use any items around you to tell stories in this environment.
Changing clay items in each frame is a key part of the claymation process. We've seen a lot of clever and artistic figures on the big screen thanks to wires and clay.
Making folks move! It is rarely utilized. For an artist to relocate just a little each frame, and the number of images you would need, you'll need a lot of patience and possibly a lot of money, if you're hiring them to do so.
The degree of freedom and precision with which they can move is also an important consideration. However, if done correctly, this kind can seem cool, but it can also make you feel a little dizzy at times.
One can do so much with cuts in cutout motion because of this. two-dimensional scraps of paper may appear lifeless, yet you may color & slice them to show a depth of detail.
It's a lot of fun to play about with a cartoon style, but it also gives you a lot more control over the final product because you can add your graphics and details. However, what about the obvious drawback? I find the task of slicing and dicing hundreds of pieces daunting.
Having puppets can be a fun and creative way to tell stories, but they can also be a pain in the neck if you're dealing with a lot of cords. However, this may be a challenge for professional stop motion filmmakers who are not the greatest choice to work with at first. These puppets are of a more traditional design.
When animators use the term "puppet" to describe their wire-based clay character, they are referring to claymation as a whole. Puppets based on the marionette style are becoming less popular.
Position the items or performers behind a white sheet and light their shadows on the sheet with a backlight. Simple, low-cost methods exist for creating eye-catching animations of silhouettes.
The duration takes to create a stop-motion video is entirely dependent on the scale and nature of your project. Testing out 15- and 30-second movies should only take an hour or two. Because of the complexity of the scenes and the usage of claymation, stop-motion projects can take days to complete.
You must first attach the camera to the Pi before it can begin rebooting.
Next to Ethernet, find the camera port. Take a look at the top.
The blue side of the strip should face the Ethernet port when it is inserted into the connector. Push that tab downward while keeping the ribbon in place.
Use the app menu to bring up a command prompt. The following command should be typed into the terminal:
libcamera-hello
If all goes well, you'll see a sneak peek of what's to come. What matters is that it's not upside-down; you can fix it afterward. To close the preview, hit Ctrl + C.
For storing an image on your computer, run the command below:
libcamera-jpeg -o test.jpg
To examine what files are in your root folder, type ls in the command line and you'll see test.jpg among the results.
Files and folders will be displayed in the taskbar's file manager icon. Preview the image by double-clicking test.jpg.
There is no default way to make Python Picamera work with Raspbian newest version.
To make use of the camera module, one must activate the camera's legacy mode.
The command below must be entered into a command window:
sudo raspi-config
When you get to Interface Options, hit 'Enter' on your keyboard to save your changes.
Ensure that the 'Legacy Camera option is selected then tap the 'Return' key.
Select Yes using the pointer keys and hit the 'Return' key.
Repeat the process of pressing 'Return' to verify.
Click on Finish with your mouse cursor buttons.
To restart, simply press the 'Return' key.
Py IDLE can be accessed from the menu bar.
While in the menu, click Files and then New Window to launch a Python code editor.
Paste the code below paying attention to the capitalization with care into the newly opened window.
from picamera import PiCamera
from time import sleep
camera = PiCamera()
camera.start_preview()
sleep(3)
camera.capture('/home/pi/Desktop/image.jpg')
camera.stop_preview()
Using the File menu, choose Save Animated film.
Use the F5 key to start your program.
You should be able to locate image.jpg on your desktop. It's as simple as clicking it twice to bring up a larger version of the image.
It's possible to fix an upside-down photo by either repositioning your picamera with a camera stand or by telling Python to turn the picture. Adding the following lines will accomplish this.
camera.rotation = 180
Once the camera is set to PiCamera(), the following is the result:
from picamera import PiCamera
from time import sleep
camera = PiCamera()
camera.rotation = 180
camera.start_preview()
sleep(3)
camera.capture('/home/pi/Desktop/image.jpg')
camera.stop_preview()
A fresh photo with the proper orientation will be created when the file is re-run. Do not remove these lines of code from your program when making the subsequent modifications.
Hook the Raspberry Pi to the pushbutton as illustrated in the following diagram with a breadboard and jumper wires:
Pushbutton may be imported at the beginning of the program, attached to pin17, and the sleep line can be changed to use the pushbutton as a trigger in the following way:
from picamera import PiCamera
from time import sleep
from gpiozero import Button
button = Button(17)
camera = PiCamera()
camera.start_preview()
button.wait_for_press()
camera.capture('/home/pi/image.jpg')
camera.stop_preview()
It's time to get to work!
Soon as the new preview has begun, press the pushbutton on the Pi to take a picture.
If you go back to the folder, you will find your image.jpg there now. Double-click to see the image once more.
For a self-portrait, you'll need to include a delay so that you can get into position before the camera board takes a picture of you. Modifying your code is one way to accomplish this.
Before taking a picture, put in a line of code that tells the program to take a little snooze.
camera.start_preview()
button.wait_for_press()
sleep(3)
camera.capture('/home/pi/Desktop/image.jpg')
camera.stop_preview()
It's time to get to work.
Try taking a selfie by pressing the button. Keep the camera steady at all times! It's best if it's already mounted somewhere.
Inspect the photo in the folder once more if necessary. You can snap a second selfie by running the application again.
This is made easier with the aid of a well-designed setup. To avoid blurry photos due to camera shaking, you will most likely want to use a tripod or place your camera on a flat surface.
If you don't press the push button every time, your stop-motion movie will appear the best. To get the camera to snap a picture, use a wireless trigger.
Maintain your shutter speed, ISO, aperture, and white balance same for every photo you shoot. There are no "auto" settings here. You have the option of selecting and locking the app's configurations first. As long as your preferences remain consistent throughout all of your photos, you're good to go. The configurations will adapt automatically as you keep moving the items, which may cause flickering from image to image if you leave them on auto.
It's ideal to shoot indoors because it's easier to regulate and shields us from the ever-changing light. Remember to keep an eye out for windows if you're getting more involved. Try using a basic lighting setup, where you can easily see your items and the light isn't moving too much. In some cases, some flickering can be visible when you're outside of the frame. Other times the flickering works well with animation, but only if it does so in a way that doesn't disrupt the flow of the project.
You do not get extremely technical with this in the beginning, but you'll need to understand how many frames you'll have to shoot to achieve the series you desire. One sec of the film is typically made up of 12 images or frames. If your video is longer than a few secs, you risk seeming like a stop motion animation.
When you're filming your muted stop motion movie, you can come up with creative ways to incorporate your sound later.
The next step is to experiment with creating a stop motion video using a collection of still photos that you've captured with the picamera. Note that stills must be saved in their folder. Type "mkdir animation" in the command line.
When the button is pushed, add a loop to your program so that photographs are taken continuously.
camera.start_preview()
frame = 1
while True:
try:
button.wait_for_press()
camera.capture('/home/pi/animation/frame%03d.jpg' % frame)
frame += 1
except KeyboardInterrupt:
camera.stop_preview()
break
Since True can last indefinitely, you must be able to gently end it. If you use Ctrl + C to force it to end, the picamera preview will collapse and the loop will be terminated because it is using try-except.
Files stored as "frame" with a three-digit number preceded by a leading zero (009,005.) are known as "frame" files because of the % 03d format. This makes it simple to arrange them in the proper sequence for the video.
To capture each following frame, simply push the button a second time once you've finished rearranging the animation's main element.
To kill the program, use Ctrl + C when all the images have been saved.
Your image collection can be viewed in the folder by opening the animation directory.
To initiate the process of creating the movie, go to the terminal.
Start the movie rendering process by running the following command:
FFmpeg -r 10 -i animation/frame%03d.jpg -qscale 2 animation.mp4
Because FFmpeg and Py recognize the percent 03d formatting, the photographs are sent to the movie in the correct sequence.
Use vlc to see your movie.
vlc animation.mp4
The renderer command can be edited to change the refresh rates. Try adjusting -r 10 to a different value.
Modify the title of the rendered videos to prevent them from being overwritten. Modify animation.h264 to a different file to accomplish this.
Corporations benefit greatly from high-quality stop motion films, despite the effort and time it takes to produce them. One of these benefits is that consumers enjoy sharing these movies with friends, and their inspiring content can be associated with a company. Adding this to a company's marketing strategy can help make its product extra popular and remembered.
When it comes to spreading awareness and educating the public, stop motion films are widely posted on social media. It's important to come up with an original idea for your stop motion movie before you start looking for experienced animators.
In the early days of filmmaking, stop motion was mostly employed to give animated characters the appearance of mobility. The cameras would be constantly started and stopped, and the multiple images would all be put together to tell a gripping story.
It's not uncommon to see films employ this time-honored method as a tribute to the origins of animations. There's more, though.
In the recent resurgence of stop motion animations, strange and amazing props and procedures have been used to create these videos. Filmmakers have gone from generating stop motion with a large sheet of drawings, to constructing them with plasticine figures that need to be manually manipulated millimeters at a time, and to more esoteric props such as foodstuffs, domestic objects, and creatures.
Using this technique, you can animate any object, even one that isn't capable of moving by itself. A stop-motion movie may be made with anything, thus the options are practically limitless.
A wide range of material genres, from educational films to comedic commercials, is now being explored with stop motion animation.
When it comes to creating marketing and instructional videos, stop motion animations is a popular choice due to their adaptability. An individual video can be created.
Although the film is about five minutes long, viewers are likely to stick with it because of its originality. The sophisticated tactics employed captivate the audience. Once you start viewing this stop motion video, it's impossible to put it down till the finish.
It's easy to remember simple but innovative animations like these. These movies can assist a company's image and later recall be more positive. Stop motion video can provoke thought and awe in viewers, prompting them to spread the creative message to their social networks and professional contacts.
It is becoming increasingly common for organizations of all kinds to include stop-motion animations in their advertisements.
Stop-motion films can have a positive impact on both education and business. Employees, customers, and students all benefit from using them to learn difficult concepts and methods more enjoyably. Stop motion filmmaking can liven up any subject matter, and pupils are more likely to retain what they've learned when it's done this way.
Some subjects can be studied more effectively in this way as well. Using stop motion films, for instance, learners can see the entire course of an experiment involving a slow-occurring reaction in a short amount of time.
Learners are given a stop motion assignment to work on as a group project in the classroom. Fast stop motion animation production requires a lot of teamwork, which improves interpersonal skills. Some learners would work on the models, while others might work on the backdrops and voiceovers, while yet others might concentrate on filming the scenes and directing the actors.
The usage of stop motion movies can be utilized to explain product uses rapidly, even though the application of the device and the output may take a while. You can speed up the timeline as much as you want in stop motion animations!
For safety and health demonstrations or original sales demonstrations, stop motion instructional films may also be utilized to effectively express complex concepts. Because of the videos' originality, viewers are more likely to pay attention and retain the content.
Some incredibly creative music videos have lately been created using stop motion animations, which has recently seen a resurgence in popularity. Even the human body could be a character in this film.
Stop-motion animations have the potential to be extremely motivating. Sometimes, it's possible to achieve it by presenting things in a novel way, such as by stacking vegetables to appear like moving creatures. The sky's the limit when it comes to what you can dream up.
When it comes to creating a stop motion movie, it doesn't have to be complicated. If you don't have any of these things in your possession, you'll need to get them before you can begin filming. However, if you want to create a professional-level stop motion film, you'll need to enlist the help of an animation company.
As a marketing tool, animated videos may be highly effective when they are created by a professional team.
The story of a motion-capture movie is crucial in attracting the attention of audiences, so it should be carefully planned out before production begins. It should be appropriate for the video's intended audience, brand image, and message. If you need assistance with this, consider working with an animation studio.
But there are several drawbacks to the overall process of stop motion filmmaking, which are difficult to overcome. The time it takes to create even a min of footage is the most remarkable. The time it takes to get this film might range from a few days to many weeks, depending on the approach used.
Additionally, the amount of time and work that is required to make a stop-motion movie might be enormous. This may necessitate the involvement of a large team. Although this is dependent on the sort of video, stop motion animating is now a fairly broad area of filmmaking, which can require many different talents and approaches.
Using the Raspberry Pi 4, you were able to create a stop-motion movie system. Various stop motion technologies were also covered, along with their advantages and disadvantages. After completing the system's basic functions and integrating additional components of your choice, you're ready to go on to the next phase of programming. Using raspberry pi 4 in the next article, we will build an LED cube.
Hello friends, all of us know that PLCs are nothing but the smartest migration from relay logic control to programmable logic control. Also, you know clearly that, logic is the heart of any programming language, and the same is applied to ladder logic programming. Bitwise operators represent the logical operations including the basic logical operations like AND, OR, and NOT and the derived logical operations like NAND, NOR, and XOR. in most cases, for each bitwise operator, there are inputs based on which the output can be decided. Some of these bitwise operators have two inputs and some have only one input. In this article, we are going to present how we can use these bitwise logical operators and their instructions with examples and practice using the PLC simulator.
Despite we have talked about these, basics and concepts in one of our articles, we have seen it’s good to remind you briefly that basic is the ground for your foot to stand coding logical operations in ladder logic programming. for defining a logical operation, there is a truth table that shows the combinations of the inputs and the resulting output. For example, the bitwise operator that has only one input like “NOT”, has only two possible value for input which is high or low, True or False. And it has one output which is the negate of the input. So it is either TRUE or FALSE. To sum up, for every bitwise operator instruction, we are going to discuss its truth table showing the states of the possible combinations of its inputs and the resulting output as well. In addition, one example using ladder logic programming shows the operation practically. We come to see it is important to list the bitwise operators in table 1 below shows the inputs, output, and the symbol of the logical gate that is equivalent to that bitwise operator.
Table 1: the bitwise operator list
The bitwise operator |
Inputs |
Output |
AND |
2 |
1 |
OR |
2 |
1 |
NOT |
1 |
1 |
NAND |
2 |
1 |
NOR |
2 |
1 |
XOR |
2 |
1 |
Guys, we can see the truth table of the AND instruction as tabulated in table 2. It shows the operator has two operands input A, and input B, and one output. The inputs can be switches, sensors i.e. limit switch for example while the output is a digital output to switch one actuator i.e. motor.
Input A |
Input B |
Output |
False |
False |
False |
True |
False |
False |
False |
True |
False |
True |
True |
True |
Also, Fig. 1 shows the symbol of the AND gate which is equivalent to AND bitwise operator. It shows two inputs A and B and only one output. Let us see that practically in ladder logic programming showing how to implement this with example.
Figure 2 shows our first simple rung that codes the logic of AND bitwise logic. It shows two contacts A and B are connected in series to decide output AND-RES based on AND logic shown in truth table 2. So let us go .simulating this thing we just coded and see the logic in the application.
We typically have 4 cases according to the truth table. Figure 3 shows the case when inputs A and B are low. The output shows low as shown by the coil AND-RES.
Now let us switch on input A and keep the second operand B false as shown in fig. 4, output AND-RES output still off.
So let us try to switch the other input, B ON, and set input A off, as shown in fig. 5 output is off as represented by coil M0.2, tag AND-RES.
At last, when both inputs A and B are ON as in Fig. 6. Now only the output comes to turn ON.
Guys!, you know for sure have got to know that, with AND logic, for having the output turned high both inputs A and B must be high.
Ladder logic in Siemens and most other brands offer the facility to perform AND between byte, word, and Double word memory space as shown in Fig. 7 shows the AND block.
Figure 8 shows the usage of AND block for byte data type and it is possible to do the same with a word or double word data type. The instruction block applies to byte, word, and double word data types. However, for showing one example, Fig. 8. Shows the process of byte datatype. It shows the inputs A and B represented by memory bytes MB1 and MB2 while the output is represented by MB3. The operation shown in Fig, 8, can show the AND logic between two bytes that hold values “10001110” and “00001111” so the output represented by MB3 shows the value “00001110”.
This logic gate has two inputs and one output like the “AND” gate. Like its name, the output comes true when either input A or input B comes true as shown in Fig. 4.
Table 3 lists the truth table of the “OR” gate. It lists all possible combinations of inputs and the output status as well. It shows that the output comes to true when input A or input B comes to true.
Input A |
Input B |
Output |
False |
False |
False |
True |
False |
True |
False |
True |
True |
True |
True |
True |
Figure 10 depicts the very simple rung of ladder logic that represents OR bitwise operation. It shows two inputs A and B connected in two parallel branches to give the output. So let us simulate that very OR code and apply the cases listed in the truth table in table 3.
Typically as listed in table 3, the output is low when both inputs are OFF as shown in Fig. 11.
Ohh, you can see output comes ON when input A is ON and input B is OFF as shown in Fig. 12.
Also, output comes ON when input B is ON and input A is OFF as shown in Fig. 13.
Also, you can see output comes ON when both inputs A and B are ON as shown in Fig. 14.
That concludes two things guys, in OR bitwise logic, for having output ON, there must be at least one of the inputs High.
Ladder logic in Siemens and most other brands offer the facility to perform OR between byte, word, and Double word memory space as shown in Fig. 15 shows the AND block.
Figure 16 shows the usage of OR block for byte data type and it is possible to do the same with a word or double word data type. The instruction block applies to byte, word, and double word data types. However, for showing one example, Fig. 16. Show the process of byte datatype. It shows the inputs A and B represented by memory bytes MB1 and MB2 while the output is represented by MB3. The operation shown in Fig, 15, can show the OR logic between two bytes that hold values “00001111” and “11110000” so the output represented by MB3 shows the value “11111111”.
This logic gate has only one input and one output. In a very simple language, the output is the inverted logic of the input. So when the input is true, the output would come to false and vice versa as shown in Fig. 17.
Table 4 lists the truth table rows of all possible combinations of input and output.
Input |
Output |
True |
False |
False |
True |
Figure 18 depicts a very simple example of a ladder logic rung that shows the output “NOT-A” is the negate logic of the input A.
Now let's simulate the two cases listed in table 4 when inputs A is high and when it is low as well. Figure 19 and 20 show the output is the negate of the input using the NOT bitwise logic.
Now Guys we have gone through the basic bitwise logic. So how about the other bitwise logic that is formed by combining these basic bitwise operators like XNOR? let us simulate XNOR.
XNOR is the negative logic of OR bitwise or you can name it as NOT-OR. Table 5 lists the combination of its two inputs and its output. It shows clearly that, the output becomes true when inputs are equal i.e. both inputs are true or both are false. Yes! Exactly, that’s why this bitwise operation is used when we need to compare two inputs if they are equal or not.
Input A |
Input B |
Output |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
Figure 21 shows the symbol of the “XNOR” logic gate showing inputs and output of the bitwise operation.
On the other hand, Fig. 22 shows a sample ladder logic of an “XNOR” logic gate implementation. It shows that there are only two ways to have the output in a TRUE state which are by set both inputs TRUE or setting both FALSE. So let us apply this to our simulator and test cases listed in table 5.
Figure 23 shows the test of simulating XNOR when both inputs are low. You can notice friends that output comes to high.
The same thing when both inputs are high, outputs show high as shown in Fig. 24.
Ohh, you can see when one input is not matched with the other that leads to low logic of the output. That concludes the XNOR gives a high logic output when only both inputs have the same logic; otherwise, it gives a low if they are different.
Before naming the next tutorial, I would like to let you know that there are many other bitwise operators like XOR, NAND, NOR, etc. this bitwise logic can be programmed in the same scenario we demonstrated above. Now, let me tell you that the next tutorial will be about one of the most important instructions ever in the PLC that will ease the data transfer between memory locations including all data types bytes, word, Dword, etc. it is the MOVE instruction in ladder logic. So be there to learn and practice that good one.
Hi friends, today we are going to learn a good technique to run multi outputs in sequence. In another word, when we have some output that is repeatedly run in sequence. In the normal or conventional technique of programming we deal with them individually or one by one which takes more effort in programming and much space of memory. So instead we can use a new technique to trigger these outputs in sequence using one instruction which will save the effort of programming and space of memory. In this article, we are going to introduce how to implement sequencer output instruction. And practice some examples with the simulator as usual. Before starting the article, we need to mention that, some controllers like Allen Bradley have sequencer output instruction and some has not like Siemens. So we are going to give one example for each case showing how to code the equivalent to the sequencer output instruction in the PLCs that does not support this instruction.
Figure one shows the block diagram of the process. The instruction takes the input data from the file, array, and data block and sequentially relays it to the outputs to trigger them sequentially.
Figure 2 shows the block of the sequencer output instruction showing input and output parameters. The file parameter is the first input parameter showing the address of the reference sequencer file. In addition, the mask input is to receive the address of the mask or the data block of which the instruction will move the data sequentially before relaying it to the output. Furthermore, the dest parameter is an output parameter that shows the address of the output to which the sequence bits will be applied. And the control parameter is the storage words for the status of the instruction, the file length, and the position of the pointer in the data file or array. Also, the length parameter holds the number of steps to move in the data file to the output destination sequentially. And position parameter holds the location of the pointer in the data file.
Figure 3 shows an instance of sequencer output instruction QSO. The QSO instruction steply moves through the input data file or array or data block and transfers sequentially the data bits from the data file to the output (destination word) through the mask word. The status of the instruction can be shown in the DONE (DN) bit. You should notice my friends that after the data transition is done the position is reset to the initial position or the first step.
Now guys, let us move to the ladder logic coding. So how does that sequencer output instruction work in ladder logic? Well! Figure 4 shows a complete example of QSO instruction that is used in Allen Bradley to handle the sequencer output process, it shows one rung that has a start and stops push buttons from left to right at address I:0/0 and I:0/1 respectively to control the starting and stopping of the sequencer output processing. Next, you can see input I:0/2 which is used as a sequencer process flag to switch on or off the sequencer process. So, if the start PB is requested when no emergency stop and the sequencer on input is ON, the QSO is enabled and the data at address #B3:0 will be moved to dest at address O0:0 though the mask word at address 000Fh starting from position 0 with length 4.
Figure 5 shows the data file that the QSO uses to transfer sequence data bits to output. It shows the bits B3:0, B3:1, B3:2 & B3:3 are set to 1 for reference. So, when the sequencer ON input is set to high (I:0/2). The output Q:0/1 will be turned on based on the data in the data file shown in fig. 5. In that case, the length is 4 and the position is 1.
And when the sequencer flag I:0/2 is switched on next time, output O:0/2 will be switched ON. In that case, the length is 4 and the position is 2 as shown in Fig. 6.
In the third time, the sequencer flag is turned ON, the output O:0/3 will be turned ON and the length and position are updated to 4 and 3 respectively as shown in Fig. 7.
When it comes to the fourth time of switching the sequencer flag I:o/2, the output O:0/4 will be turned high and the position will be at 4 and length is 4 as shown in fig.8. At that time, the process is reset and position reset to 1.
The previous example shows how it is simple to control a bunch of outputs that are required to run in sequence with only one rung of the ladder program and using only one instruction which is QSO in Allen Bradley. This merit helps to save the memory space and time and efforts of programming and troubleshooting as well because the program will be shorter and more readable. However, still, some brands have not supported such instructions even the big names like siemens. That can not be counted as limitations but they are banking on there being a way to implement such logic. So, it is very beneficial for you guys to go implement together a piece of code (ladder logic) that is equivalent to such instruction for performing the function of sequencer output instruction in Siemens S7-1200 using our simulator.
As you guys see the sequencer output instruction is nothing but shifting the height value from right to left bit or right to left or even rotated shift for continuous operation. That drives our thinking to use the shift instructions in Siemens to perform this sequencer output instruction.
Figure 9 shows the rungs of a ladder PLC simple program that implements the sequencer output process. See guys how lengthy the logic we have to code to do the same function of single instruction QSO in Allen Bradley. Again, that is a drawback or limitation thing but the program is more lengthy and takes more effort and also memory it is consuming that way. Moving to the logic listed in Fig. 9, the first thing is using a rotated shift instruction that shifts through the data block bit by bit and applies to the output QW0. At the same time increment instruction is used to move through the data. Also, one on delay timer is used to do some delay to show up the sequencing process of activating the output sequentially. And the end, a comparison instruction has been used to check if the pointer or the position reached the last output coil to reset to the first position and so on.
Figure 10 shows the simulation of the sequencer output ladder code before activating the processes by using M0.0, it shows the position is at 1 and the output QW0 is all zeros. So let us activate the sequencer output process by set M0.0 to high and see the output.
Figure 11 shows the process after activating the sequencer program and starting to switch on outputs sequentially. The figure shows the process reached the sixth output coil and the position set to 7 to point at the next output. The process continues to tell reach the last one and then the position set the first step.
I am glad to have you guys following tell that point and I hope you see the importance of the sequencer output technique in reducing the effort of programming and saving memory. Next time will take a tour with the bitwise logic operator and how they are utilized and how they work in the ladder program with given examples and for sure simulation to practice their usage. So let’s meet then and be ready.
Fluid mechanics is considered to be one of the essential branches of Mechanical Engineering. Fluid Mechanics comprises two words, fluid, and mechanics, with different meanings and research criteria. In this article, I will extensively introduce fluid mechanics and its importance in daily life. So without wasting any time, let us start:
We remember in the early classes, we used to study three states of matter, and afterward, they became four named:
The definition of fluid is the state of matter that can be liquid or solid. We might have noticed that whenever the matter is in any stage, the criteria to know its state is to understand how much stress it can bear, and we name that stress as shear stress that changes its shape. But this situation mostly happens in solid or liquid cases. When the stress is applied, the substantial changes shape and reform into a new one. But up to a limit that cannot destroy its ultimate form. The stress applied to a solid is directly proportional to the strain, whereas, in liquids, the stress is directly proportional to the strain rate.
As mentioned that fluid mechanics comprises of two terms, so now I will define what mechanics is and how much it is essential in our today’s life.
Here are two essential terminologies:
The branch of mechanics in which bodies are at rest is called statics. It is a vast study of internal and external forces in a structure
Example:
The best example of statics is when you are standing on a plane on the rigid ground. The force of gravity and the reaction force as the reaction of gravitational force, both these forces act as statics and help in maintaining the state of rest.
The branch of mechanics which studies the bodies in motion is called dynamics. The study is all related to the movement and what is the cause of it.
Example:
The example of moving the body and dealing with all the forces that are acting on and their effect is categorized in dynamics.
Fluid Mechanics is the sub-category defining the fluid’s nature at rest or in motion.
The types of fluid mechanics are as follows:
Example:
It involves the mass flow rate of oil through the pipeline, study of the pattern weather forecast, and blood circulation.
Example:
The best example of fluid statics involves drinking with a straw. The mechanism happening inside is that when we reduce the pressure at the top of the straw, inside the liquid the atmosphere pushes the liquid up to the mouth.
Fluid statics and dynamics are divided into compressible and incompressible fluid as well as real and ideal fluids. So real is divided into the laminar and turbulent flow, and this goes on.
As I discussed earlier, fluid flow is classified, and they vary from type to type.
By reading their names, you get an idea of what a laminar and turbulent flow is. So laminar flow is one in which fluid flows smoothly without any turbulence. Usually, highly viscous fluid with low viscosity is characterized as laminar flow. Whereas turbulent flow is the one in which fluid flow is not smooth. And they have high velocities.
The compressible and incompressible flows depend upon one of the significant factors density. The flow is incompressible when the density is constant or nearly constant throughout the flow. Incompressible flows characterize most liquids. The compressible flows are opposite to the incompressible ones; they don’t have constant throughout. One of the best examples of compressible flow is gases.
In these types of flow, viscosity is one of the essential vital elements. Every fluid has some viscosity value. So the flows with a significant amount of frictional effect are said to be viscous. Inviscid flows are where viscosity is neglected or to some extent.
As the name shows, the flow covered with a solid boundary is considered internal flow. The liquid is flowing in a pipe or a wire. At the same time, the external flow is defined as an unbounded flow. The fluid flowing over the pipe or the fluid over the ball is exemplified as external flow. And the flow inside a pipe covered is said to be internal flow.
The names are enough to define the nature of the flows. So steady or uniform flows are said to be steady flows. And the unsteady one is opposite to the steady one that does not have any uniformity.
Natural flows are the one that flows naturally. But the theoretical example will be the one that flows due to the buoyancy effect. The forced fluids are the ones that are forced to flow with the help of external means. An example of forced flow is a fan or pump.
The nature of the fluid varies from type to type. The following are some vital types of fluids.
Real fluids possess viscosity. Viscosity is defined as resistance or opposition. Eliminating the ideal cases, all the fluids are examples of real fluids.
The ideal fluids are the one that has no viscosity at all. As I have mentioned just now that all the fluids have viscosity. So ideal fluids are just an ideal case study.
Both of them have two different properties. The Newtonian fluids are the ones in which the shear stress is directly proportional to the shear strain, and in non-Newtonian fluids, they are not proportional to each other.
The ideal plastic fluids are the ones in which shear stress is directly proportional to the shear strain. The shear stress value is also more than the yield value. These fluids are velocity gradient ones and have significant importance.
Fluid mechanics is considered one of the vast branches of mechanical engineering that covers all the fundamental laws of physics. It is not wrong to say those fluid mechanics depend on these laws, and they are named as follows:
Second Law of Thermodynamics
Conservation of mass
Conservation of linear momentum
Conservation of energy
Conservation of angular momentum
As I have briefly discussed all the types of fluids, the following is their graphical presentation.
The properties are one of the significant features of everything. The fluids also have some properties. The following are some essential properties of the fluid.
The word viscosity means thickness. According to the definition, viscosity is defined as the fluid’s property related to friction and resistance.
When one layer moves adjacently to the other, some friction exists, which we named viscosity. The layers are moving at some distance and are named dy. The velocities of the fluids are u and u+du, respectively.
The graphical presentation of the layer velocity versus the distance is shown below.
The graph will explain the trends of velocity and distance. As mentioned, two layers are moving adjacently to each other, so the layer that is on top imposes shear stress on the lower layer, and the lower layer, in response, causes shear stress on the upper one.
According to physics, density is defined as the mass to volume ratio. So the fluid mass to fluid volume ratio is the density of the fluid. In liquids, the density is constant, but in gases, it’s variable.
The specific weight is defined as the ratio between the weight of the fluid and volume. Thus the weight density is defined as the weight per unit volume of fluid and is denoted by w.
Mathematically,
w=Weight of FluidVolume of Fluid
w=Mass of Fluid×Acceleration due to cycleVol. of fluid
w=Mass of Fluid×gVol. of Fluid
w=ρg
The specific volume is defined as the volume of a fluid by a unit mass or volume. This property applies to gases.
Mathematically,
Specific Volume = Vol. of fluidMass of fluid
Specific Volume=1Mass of FluidVol.
Specific Volume=1
The thermodynamic property is the salient feature of gas and liquid. We know that when liquids are compressed, they form gas, so thermodynamics is one of the critical features of gases.
The equation below shows a connection between the pressure, specific volume, absolute temperature, and gas constant.
p=RT
The definition of a system is as follows:
The system is the quantity of matter or a specific region specified for research or study.
As you can see from the diagram, an imaginary or real wall or a surface separates the system from the surroundings. So a system can be open, close, or isolated (special case). So following is a brief explanation of all the types of systems.
Open System
In the open system, the volume is controlled and the energy and mass can easily pass through the boundary of the control volume.
Close System
In the closed system, the mass is controlled and cannot cross the boundary. The energy can cross the boundary easily and volume is also not fixed.
Isolated System
In the isolated system, the energy cannot cross the boundary.
The definition of dimensions is as follows:
The Definition of units is as follows:
There are two types of units explained below briefly.
Some basic dimensions are given the names and they are as follows:
Dimensions |
Units |
Mass |
m |
Temperature |
T |
Length |
L |
Time |
t |
Some dimensions are assigned names in terms of primary dimensions and they are as follows:
Dimensions |
Units |
Volume |
V |
Energy |
E |
Velocity |
V |
Two kinds of units are commonly used in today’s world and that is;
The English system does not have an apparent systematic and numerical base. It is considered to be one of the most difficult systems to memorize. In almost every country metric SI units are widely used but the United States is the only country that has not fully opted for the metric system rather they use the English system in many states.
Example
12 in =1 ft
1 mile =5280 ft
4 qt =1 gal
It is one of the most commonly used and feasible units. The metric SI units are widely used in industries and countries like England. There are seven basic fundamental dimensions introduced and their units in SI are as follows:
Dimension |
Unit |
Length |
meter (m) |
Mass |
Kilogram (kg) |
Time |
Second (s) |
Temperature |
Kelvin (K) |
Electric Current |
Ampere (A) |
Amount of light |
Candela (cd) |
Amount of Matter |
Mole (mol) |
There are numerous examples of fluid mechanics in our daily life. The following examples are some crucial parameters that cover fluid mechanics.
Our heart is an integral part of the human body that pumps blood to all body parts through arteries and veins. In this modern era of science and technology, many scientists have designed artificial hearts that work on the working principle of fluid dynamics and transmit blood and pumps like the original heart.
Our homes are one of the best examples of fluid mechanics. The piping, sewage, hot and cold water pipes, natural gas, and LPG work on fluid mechanics principles. Moreover, our refrigerator, air conditioning, heating, cooling, and insulating system are all examples of fluid mechanics.
We find various examples in our cars, planes, buses, and ships. Fluid mechanics covers all the fields associated with fuel transportation, from the fuel tanks to the cylinders, fuel pumps, carburetors, etc. It covers all the cooling heating systems of automobiles, lubrication systems, power steering, and radiator cooling.
Fluid mechanics is used in many medical devices such as glucose monitors, heart assistance devices, etc.
It is beneficial for eliminating pollution from the atmosphere, cleaning water, cleaning sewage systems, and controlling floods.
Hi Guys! Hope you’re well today. I welcome you on board. In this post, I’ll walk you through How to Optimize a PCB Panel Layout.
PCB panels are used in the manufacturing process to produce PCBs in large numbers. This not only reduces the overall cost but also makes the manufacturing process more efficient and reliable. PCB panelization is a manufacturing technique where multiple PCB designs are replicated on a single large board called a PCB panel. Then these individual boards are removed and depanelized from the panel to install them in the final product.
The number of panels is directly related to the overall manufacturing cost. To produce more panels, more cost will be required. However, it also depends on the shape of the board. If you require more boards of the same shape and size, it will reduce the panel cost since they all can be replicated and manufactured on a single panel.
Read on to find out how we can optimize the PCB panel layout to save both cost and time.
Let’s jump right in.
PCB panel is a large board that contains multiple instances of a small PCB. Know that the PCB panel is made up of the same material as the board and the panel size depends on the number of small boards you aim to produce. It is required to best use the panel space to produce PCBs in large numbers and to keep the unused panel space minimum. Since the more boards cover the overall panel space, the more efficient the manufacturing process will be.
You can pick the panel size as per your requirement. However, the most commonly used panel size is 18 x 24 inches. Normally, the boards are 0.100 inches apart in one panel. Panel designers need to be very careful while putting the PCB designs in the panel.
It is important to use your PCB design tools properly to avoid any hassle in the manufacturing process. Decisions made earlier during the PCB design process can go a long way and keep you from redesigning the entire board from scratch. These design tools can help you select the layer stack up configuration and PCB material. Additionally, they can help you transfer design data using open standard formats. Using this format manufacturer can exchange the design information with the PCB designers and can compile it in one file format.
To make the manufacturing process efficient, it’s better that PCB designers are in contact with the PCB panel designers. This way PCB designers can make some tweaks in the design to slightly alter its shape so multiple boards can effortlessly find a place in the panel to maximize the panel space.
Following points that every PCB designer should consider:
Hanging Components
Extra clearance is required for some components that overhang the board. It is created around the outline of the board placed in the panel. Creating extra room for clearance may slightly change the design of the panel. So it is better that designers contact in advance with the panel designers to figure out all the options.
Adding Features
The panel designer will add features to the panel like edge marks and tooling holes. PCB designer needs to make sure the placement of PCB designs doesn’t cause any problems.
Weight of Components
PCB panels carry some strength though, but they are not solid enough to withstand a large number of components. Since components come in various shapes and sizes. They vary from small to large size. The concentration of components may cause some problems and create a slight bend in the panel. Collaborate with the panel designers to explore other PCB layout options to handle a large number of components.
Width of the Board
The panel made up of thick board doesn’t cause a problem. It can deal with all manufacturing techniques applied on the array of the board. Trouble arises when thin boards are to be made for the final product. Thin boards produce a bend on the panel and can cause the solder to appear on the top of the boards. Consult with your panel designer if you want thin boards for your product. They may use a pallet and come up with another PCB layout option to deal with the thin boards.
Board edge clearance is another aspect to take into consideration while making the panel. It works as a shield for the board components and the copper and keeps them from being damaged.
Clearance in Breakout Tabs
PCBs are depanelized in two ways: by breakout tabs where small tabs are produced between the PCB designs. These tabs come with spacing between them on the panel. Both the copper and the components should have 0.125 inches clearance from the tab.
Clearance in V-grooves
Another method of depanelization is by cutting the V-grooves that are pre-scored V-shaped marks placed alongside the board edges. In V-grooves, the copper should come with 0.02 inches clearance and the components should exhibit 0.05 inches clearance.
FPC flexible boards are produced using three-panel methods namely:
Backward Panel
Conventional Panel
Oblique Panel
Panels are created to save material during the manufacturing process. Keep the distance between the boards minimum to effectively use the entire space of the panel. To accelerate the manufacturing process and to keep the entire panel process in check, a few things are included in the panel, like plate size, necessary instructions, and etching characters.
Each corner of the entire panel is drilled with a positioning hole to keep the board in place during the production process. For flexible boards, the panel width and the length should be 250mm. Since the larger board will lead to low production accuracy and eventually product failure.
An online world is flooded with scores of PCB fabrication houses. It’s difficult to find a diamond in the rough when all they claim to be the best in what they do. What we are going to share is our personal experience with the company called PCBWAY. They have an expert team who thoroughly hears your demand and guides you along the process to make an educated decision. The products are no less than quality. If you think what we say doesn’t really matter, then go and try it yourself, you’ll find the answer.
Apart from PCB prototype, they also offer PCBA (printed circuit board assembly) service so you don’t have to place components on the board. They come on board ready-made from the fabrication house.
If you want PCBs in large quantities, PCBWAY also offers PCB panel service. When you order a PCB panel, you can see a significant cost difference compared to if you want one PCB to be manufactured.
When you visit the called PCBWAY Fabrication House website, you see the following image with the option “Instant Quote”.
After writing the parameters in the given space, when you click the “Quote now” option you will come across the following page.
You can the option “Board Type” which is further divided into three categories with two options for PCB Panel. Either you can select the PCB panel by selecting the “Panel by Customer” option or you can ask PCBWAY to make the panel by selecting “Panel by PCBWAY”
You can select the size, quantity, number of layers, material, thickness and much more. Additionally, you can write down your further requirements in the “other special request” option. The primary aim is to give clear instructions so the final product exactly matches what you ordered in the first place.
Once you submit the order, it exhibits full detail on how your order is going to be processed, including order status, address, past orders, invoice details and the total time it’ll take to complete the order. There are no hidden charges, which means you’ll be charged exactly the price you’ll see in the order status. Plus, if you find any difficulty in placing the order or in the selection of the material, they will guide you to make the final decision.
The website comes with a live chat option through which you can communicate with the agent for any query. Though their English is not impeccable, but it still good enough to understand your questions and answer them properly. You can contact them any time from Monday to Friday, however, if you want to contact on the weekend, you can submit your email address and leave a message and they will get back to you within one business day.
Once the boards are manufactured, they go through a rigorous inspection test to ensure the quality of the product. This includes if the holes are properly drilled and aligned, the uniformity of the traces all the way through the board, and a thorough comparison with the design document to ensure that all the requirements are met. The inspection tools include an X-ray inspection machine, a flying probe tester, and an automated inspection machine. With 50 engineers on board, rest assured the final product gets the proper treatment it deserves.
As mentioned earlier, panels are used to produce PCBs in bulk. Moreover, they also refrain the boards from vibration and shock during the assembly process.
A simple coordination between the PCB designer and Panel designer can help build the PCB panels with accuracy and efficiency.
If you’re a newbie and just starting out, it’s better to get your PCB manufactured by the professionals in the PCB fabrication house. This will save you both time and money and you’ll learn many things along the process.
That’s all for today. Hope you find this article helpful. If you have any questions, you can ask me in the section below. I’d love to help you the best way I can. Thank you for reading the article.
There is no doubt that the traditional workplace has changed in a major way in the last few years. About half of companies now have remote workers. This means that managing a team looks different from what it ever did before. Facilitating the best of what a team has to offer, the synergies, the camaraderie, the collaboration, looks and feels different. It is sometimes difficult.
Those who manage remote teams are learning how to keep teams engaged and motivated, even as they work in isolation. Here are some of the techniques they are employing to keep their employees on track.
Working in the office made it easy and natural to casually ask questions, double-check information, and get feedback from colleagues. That ease made collaboration and the sharing of ideas more convenient. Managers who want to keep the teamwork going need to create situations in which employees have the chance to talk informally about work.
Scheduling a daily touch-base meeting , set up not to accomplish a specific task, but rather just to get aligned on the day, is vital. These daily meetings should be short and predictable. Every team member should know that this meeting is where they will be briefed or reminded about the big picture for the day and have the opportunity to make comments or ask questions about things the team is working on. To be clear, this is not a time to get into the details about how to accomplish a project, but rather a time to discuss teamwork in general.
In-person, co-workers can hear each other’s voice inflections, see body language, and generally understand more of the intent behind what someone is saying. Communicating through a computer screen takes away all those context clues. It’s really easy to misinterpret someone’s tone when you read a text or email.
The solution is to take zero shortcuts when it comes to communication . Don’t rush the email. Write in complete sentences. Avoid shorthand and abbreviations. Make it clear that if anyone has any questions, they are welcome and encouraged to ask. Thank employees who take the time to verify and clarify instructions.
Working from home might feel, to some employees, like they are always at work or that there are no boundaries for when to send emails. Being connected 24/7 should not make the team feel obligated to be available for work 24/7. Clearly communicate what the expectations are for when employees should be sending messages and also the timing of when they should be responding. For example, employees should respond within 3 hours of receiving a message between 9 a.m. and 5 p.m., but have no obligation to respond outside of those hours.
These rules will help the people communicating information and receiving information. They have the added benefit of building trust among team members and of making employees feel appreciated by the company.
Technology tools that help the team work as a team are the most important investment a company can make when it has remote employees. It’s not a place to scrimp. Companies are wise to look into software hosting services that allow any computer from any location to share desktop features, access to software, and the ability to work on shared documents. A good software hosting company will also provide security from hacking, cyber-attacks, and guard logins.
Having the right technology is so crucial that it should be a regular topic of conversation among teams and managers. Managers should regularly poll employees about how their current technology is meeting or not meeting their needs.
Even when everyone worked in the same office, managers understood that employees all have their own personalities, challenges, and styles. The era of working from home only adds to those differences. Not only do workers come to the job with their own personal uniqueness, but they now also bring their home lives to work, literally.
Some employees may live in areas with inconsistent internet connections. They may have pets, relatives, roommates, or alternative living arrangements. Their living space may not have the capacity for a dedicated workspace. They may live somewhere where getting some quiet or privacy is a struggle.
The way managers can combat these special needs is to shift the focus of work towards goals and deadlines, rather than pacing. Managers need to be more flexible. It’s not even possible to micromanage remote teams, so why try? Does it really matter if an employee is going to be distracted by his kids getting off the bus every afternoon as long as he puts in the time and effort to get his work done on time?
Remind the team why they are doing what they are doing. Understanding the purpose of the work is a huge motivator and will drive better performance.
Our next step in the Raspberry Pi training program is to get zero tiers up and run on a Raspberry Pi 4. How to utilize a Raspberry Pi to measure internet speed and store the results in Grafana or Onedrive was the topic of the last piece. During the project, you will discover how to install ZeroTier on a Raspberry Pi and get it up and running. We will also learn how to set up a firewall to secure our network.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | Raspberry Pi 4 | Amazon | Buy Now |
Raspberry pi 4
Power supply
Ethernet or wifi
ZeroTier is a software that provides a streamlined web-based interface for constructing virtual networks connecting various gadgets. Somewhat akin to configuring a virtual private network on a Raspberry Pi, these networks exist only in cyberspace. The process of provisioning, however, is much easier, especially when dealing with several devices.
ZeroTier can be used on various platforms, from computers to mobile phones. Its cross-platform compatibility with Unix, Microsoft, and macintosh means you can set up a virtual connection without worrying about whether or not your hardware will be able to connect to it.
The ZeroTier business model is "freemium." Using our free plan, you can connect up to 50 approved devices to the virtual network.
You need to create an account on the ZeroTier website before you can use the program on your Raspberry Pi. This is because virtual network administration is performed through their website.
You may manage your entire virtual network from one central web-based console, including assigning permanent IP addresses to individual devices.
Registration on the ZeroTier hub website is required before a network ID can be generated. Access your virtual networks with this web-based interface. Go to ZeroTier Central on whichever browser you like. When you go to the site, look for the "Register" button so you can start the account creation process.
The following window will appear once you've created an account and logged into the web interface. Hit the "Create A Network" button in the screen's center to get started.
We can move on now that you've joined ZeroTier and have your network ID. In this part, you'll learn how to download and install ZeroTier on your pi device.
First, let's check that the software on your pi Device is up to date.
To be up-to-date, we need to run the following two instructions for the item list and all installed modules.
sudo apt upgrade
After adding the GPG key, we can install ZeroTier via their installation repository on our pi Device. With this key, we can ensure that the tools we're installing are directly from ZeroTier and don't include any malicious code. To obtain the GPG key via their repo, type the following code and store the contents of the "de-armored" file in the "/usr/share/keyrings/" folder.
Now that the GPG key has been inserted, a source list containing the ZeroTier repository must be compiled. First, we need to create a shell variable named "RELEASE" and assign it the operating system's internal codename. To construct the proper URLs for the ZeroTier repo in the subsequent steps, we will execute the following command.
Once we have the shell variable configured, we can utilize it to construct the relevant ZeroTier repo Urls for the Operating system. We finally save this string in the "/etc/apt/sources.list.d/" folder under the name "zerotier.list."
The next time you refresh the Raspberry Pi's packages lists, it will pull ZeroTier directly from this location.
Since we have modified the Rpi's source code, we must revise the list of installed packages. Using the command line, you could change your system's component list.
After updating, we can use the command beforehand to download the ZeroTier package onto our RPi.
ZeroTier can be set up to automatically launch on system startup as part of the setup procedure.
Having finished the ZeroTier installation on our RPi, we can now link to the networking we created in the introduction. First, make sure you get the network's identifier handy.
To connect the RPi to the network, we must use the ZeroTier Command line. You can utilize the following code to accomplish this. As a first step, swap out "[NETWORKID]" for the ID you gathered previously in this tutorial.
So after this message, your RPi should've just joined the ZeroTier channel.
The "Members" portion is located toward the bottom of the managerial section for the ZeroTier system on the RPi.
You'll need to select the "Auth" box to tick here after identifying the machine you added. As a result, your RPi can communicate with other gadgets on the same network.
A machine through your ZeroTier channel can be located using the information in the "Address" column. The "sudo zerotier-cli status" prompt will cause the RPi to display this data.
The Name/Description field can be used to assign a memorable label to this innovative gadget for future reference.
Lastly, take a peek at the "Managed IPs" section.
If an IP address has been assigned to the gadget, it will appear in this column. These IP addresses will allow you to gain access to that machine. This column can specify which device will receive the IP address. If you're trying to get an Internet address for a newly approved source, be patient; it could take a few minutes.
Whenever your RPi successfully connects to the ZeroTier networks, you must see something similar to what is shown below. The last number is Pi's Internet protocol address within the VPN connection.
Connecting to other gadgets on the VPN connection is now possible. Having the device's Internet protocol is all that's required. The ZeroTier management console is the quickest way to learn which IP addresses are assigned to particular gadgets.
Here you can find detailed instructions for setting up your RPi with the Syncthing program. For the program to be installed, we must first add the program's PGP keys and the package repo as possible sources.
sudo apt full-upgrade
Following this, check that the apt-transport-HTTP package has been successfully installed. When using the installer, you can now access sources that utilize the secure Secure protocols, thanks to this package's inclusion. It's not possible to do this by default. This is included by default in most modern operating systems, but it may be missing from lightweight distributions like Raspberry Pi OS Lite. Executing the line below will install the necessary package.
Finally, the Syncthing credentials may be added to our keyrings folder. The purpose of these keys is to verify the authenticity and integrity of the packages we install before trusting them. To obtain the credentials, execute the command that follows on the RPi.
Since the key has been included, the repo itself may be included. The RPi project will use the Syncthing program, namely the stable release. Use the following command to include the repo in the list of sources.
We have to refresh the installation list before installing Syncthing from the repo. We must revise the list for the package manager to use our different sources. To update your RPI, type the following command into your device's terminal.
Let's finish setting up our RPi by installing the Syncthing app. Now that the package repository has been added, the program can be installed with a single command.
The Syncthing web application will only be accessible while close to the device. Those using a Raspberry Pi without a monitor or keyboard would have a very frustrating time if this were the case, but we can change the setup to allow external access.
The first order of business is to discover the RPi's actual local network address. Before proceeding, please ensure that your Rpi has been assigned a permanent IP address. This command lets you find your Pi's local IP address.
To move on, a single iteration of Syncthing must be run to create initial configuration files. The RPI user will be used solely in this tutorial to launch Syncthing.
Press CTRL + C to exit the program after the first launch.
The necessary configurations for Syncthing will be generated after the first execution. The Syncthing program must be launched in the context of the pi user for this configuration file to take effect. With nano editor, start editing the necessary configuration file with the line below.
Locate the following code in this script with the searching key CTRL + W to quickly locate this sentence.
127.0.0.1:8384This line needs to have the local Internet protocol of our Pi substituted for the default local Internet address (127.0.0.1). For instance, with our Pi's IP address, this code would become something like this.
192.168.0.193:8384We are limiting our access to people in the same local area network by use of the local Internet address. Alternatively, you can use the internet address "0.0.0.0" to grant access to every IP. Following the successful IP address change, save changes to the script.
One final step is necessary now that the Syncthing us may be accessed from devices other than the RPi. This responsibility includes developing and launching a system for the program. The Service will enable Syncthing to launch automatically at system boot and be halted and started quickly.
Once again, we'll use nano to make the necessary changes to the Service's configuration file. The Syncthing authorized GitHub is the source for the application we will be developing. To start adding content to the file in "/lib/systemd/system," run the following command.
copy lines below and paste them to this file.
Description=Syncthing - Open Source Continuous File Synchronization
Documentation=man:syncthing(1)
After=network.target
[Service]
User=pi
ExecStart=/usr/bin/syncthing -no-browser -no-restart -logflags=0
Restart=on-failure
RestartSec=5
SuccessExitStatus=3 4
RestartForceExitStatus=3 4
# Hardening
ProtectSystem=full
PrivateTmp=true
SystemCallArchitectures=native
MemoryDenyWriteExecute=true
NoNewPrivileges=true
[Install]
WantedBy=multi-user.target
Those lines specify how our Rpi's OS must deal with Syncthing. When you're done adding lines, save the file. We could now set up our Service to automatically launch at system startup. Enter this command and hit enter.
Let's run the Service to use the Syncthing internet UI. Once again, the systemctl tool will need to be used to kick off the Service.
The Syncthing program on the RPi should be checked to ensure it has begun. Using the below program, we can make sure of that.
The notification should read as follows if the Service was successfully started and is now active.
If everything goes smoothly, you should utilize the Syncthing program on the RPi. Now that the hardware has been added, we can move on to configure the program and synchronize our data. We'll break this up into chunks for easy reading. The web-based user interface makes installing and linking devices a breeze.
You'll need to launch the web-based interface in your preferred internet browser to begin using it. The Internet address of the RPi is required to use the web-based interface. Using the Url, navigate to the following location in your preferred internet browser.
Since the Syncthing program only listens on port 8384, you mustn't remove it from the end of the string.
After creating login details, you will be prompted to sign in before proceeding to the next step.
There is no predetermined login information for Syncthing, meaning anyone with access to the UI can change your preferences. Login credentials can be set up to prevent unauthorized users from wreaking havoc.
You will be warned of the potential risks if you have never specified the login details. The "Settings" button on this caution will take us directly to the configuration page.
After resetting your password, this website will log you out. You'll need to sign in with your new credentials each time you access Syncthing's graphical interface.
For Syncthing to function, it must create a random identifier for each connected device. Adding the other device's ID to your own is necessary for sharing information between devices. The RPi Syncthing installation's unique identifier can be located via the web interface.
To return to the main page of the web interface, select "Actions" from the toggle menu in the top right. Select "Show ID" from the selection menu to open the desired dialogue box.
The identification string and corresponding QR code are displayed below. The ideal identifier length is between 50 and 56 characters and may incorporate digits, letters, and hyphens. System-wise, the hyphens are disregarded, but they improve readability. If you want to connect your Raspberry Pi to additional devices, you'll need to give each of them the unique ID assigned to your Pi. You must also include their identification number. Syncthing's mechanism for linking many gadgets to a single pool requires the ID.
We've covered how to get your gadget id Number, so now we'll cover adding a new one. Keep in mind that the identifier for your RPi must be entered into whatever gadget you are installing. If not, communication between the devices will be impossible.
The "Add Remote Device" button may be in the lower right corner of the Syncthing UI. When we click this option, we'll be taken to a dialogue where we can add a gadget to our Syncthing collection.
Now that we have a device linked to the RPi Syncthing, you can test directory sharing. In this particular chunk, the default directory will suffice. Here, we keep our sync files in a folder called "/home/pi/sync" on our RPi.
Select the "Edit" button next to a directory to change its share settings. We can access the folder's sharing settings dialog by clicking this option and making the necessary changes.
Having ZeroTier Syncthing installed on your RPi and linked to a VPN, you may now sync data across machines. If you're looking for a basic virtual network solution, ZeroTier is it. And the best part is that it offers an ideally enough free plan for most people's fundamental needs. Additionally, Syncthing is a user-friendly software that enables you to synchronize folders across several gadgets. The program is among the best methods for allowing many computers to maintain directory consistency in real time. No longer will you have to trust a remote service like Cloud Servers to keep your data safe.
Following up on our Raspberry Pi programming course is the next lesson. In the previous post, we learned how to construct an FM radio using a Raspberry Pi. Analog FM broadcasting's circuit construction was also studied in detail. How to use a Raspberry Pi as an internet speed meter and save the data in Grafana or Google Drive is the subject of this article.
You can use this article if you want to keep track of how your downloads, uploads, and ping speeds change over time, and it's easy to use. In addition, you can use this to determine when your internet is at its busiest or if your internet speed has deteriorated. We'll demonstrate how to use Ookla's Internet speed test command-line interface in conjunction with Python code to create an internet speed meter.
The connection speed monitor will employ the Internet speed Command line interface to keep tabs on your connectivity.
Raspberry pi 4
Micro SD card
USB drive
Ethernet cable or Wi-Fi
The first step in configuring the RPi to monitoring system the Internet's performance is to ensure the Raspberry is updated. There is an easy way for this using the command line:
sudo apt-get upgrade
To add a repo for the Internet speed Command line software, we have to download a few additional packages. apt-transport-https, dirmngr, & gnupg1 may all be installed on your RPi by running the commands listed below.
The apt software may now use the HTTPS secure protocols thanks to the apt-transport-HTTPS module. Apt will fail to connect to Ookla's software repository if it doesn't have it. Our Speedtest.net services and your RPi must communicate securely, therefore we'll also set up gnupg1.
Lastly, the dirmngr software is installed. This software is used to add the package repositories to the Rpi's source list. Now that we've installed the necessary tools, we can import the GPG keys for Ookla's Performance test repository into our keychain and start running tests. The performance test CLI interface cannot be downloaded to our RPi without this passcode.
The Ookla repo must be added to our list of sources next. The Performance test CLI cannot be installed on our RPi without the repo being added. The command to add this repo is as follows.
You'll see that "$(LSB release -cs)" is used in the command. Input the title of the RPi Operating system release using this string of text in the prompt. We have to upgrade our packages list because we have a new module repository. Simply use the following command to update the list of installed packages.
Our RPi is now equipped with the official Ookla Connection speed CLI. Installing the software on your device is as simple as running the command below.
We may now run a speed test on your Raspberry Pi to ensure that we have successfully installed the program. To begin the speed test, enter the following command into your terminal.
There are a few terms of service you must agree to while using the speed test app on your Raspberry Pi. Simply hit "YES" accompanied by the Return key to go past this warning.
On our RPi, we can now begin writing our Program code that will actively check the speed of our downloads and uploads. The command prompt will get us started on writing our Program code to check the connection speed on the RPi.
nano speedtest.py
Type the code below in this file. We'll walk you through each component of the program, so you can get a sense of how it all works.
import re
import subprocess
import time
This script will use all of the packages listed in these four lines. We'll discuss exactly each of the modules that will be put to use in the following paragraphs.
The script uses the operating system package to interface with the os. This package will be used to see if a file already exists as part of this program.
This repackage provides a library for managing pattern searching so that we may simply perform regular expressions. The Speed test command line provides us with all the information we need to find our desired values.
To run another python code, this script needs the subprocess package. To use the subprocess module, we will be able to launch the Internet speed Command line software and receive the results.
We make use of the time package to keep track of the dates and times of all Speed test Command line calls. We will be able to keep track of the performance over time thanks to this package.
Subprocess is used to initiate a request to the Internet speed command line and instruct it to route the output of the speed test to stdout in this section of code. stdout.read is used to output data (). Finally, we decode('UTF-8') our reply variables to make it usable as a Py object after the call to the Speed test Command line.
download = re.search('Download:\s+(.*?)\s', response, re.MULTILINE)
upload = re.search('Upload:\s+(.*?)\s', response, re.MULTILINE)
jitter = re.search('\((.*?)\s.+jitter\)\s', response, re.MULTILINE)
Each of these 3 pieces of code accomplishes the same task. Every text fragment has a unique number adjacent to it, which they can deduce by running a mathematical equation on it using the re library. A ping lookup for "Latency: 47.943 ms" returns "Latency: 47.943 ms," with only the value between the characters.
download = download.group(1)
upload = upload.group(1)
jitter = jitter.group(1)
To retrieve the right numbers, we must utilize the ".group()" function. The CSV file will be able to contain the results of the Speed test Command line software output, thanks to this method.
f = open('/home/pi/speedtest/speedtest.csv', 'a+')
if os.stat('/home/pi/speed test/speedtest.csv').st_size == 0:
f.write('Date,Time,Ping (ms),Jitter (ms),Download (Mbps),Upload (Mbps)\r\n')
except:
pass
This is a simple piece of code. The program is contained within a try statement, which ensures that the program will continue to run even if an error occurs. First, we retrieve our speedtest.csv document in the try block.
If indeed the document does not already exist, "a+" in the parameters tells it that we wish to generate it and add any new content to what exists already. After that, we use the operating system package to determine the real size of our speedtest.csv documents. If indeed the file's contents are equal to zero, we can proceed. No action is required on our part if the document does not exist.
There are commas to differentiate each record's information. When formatting a string, we utilize the time strftime() method to include the time and current date. Our pings, downloads, and uploads will follow. Example output.
import re
import subprocess
import time
response = subprocess.Popen('/usr/bin/speedtest --accept-license --accept-gdpr', shell=True, stdout=subprocess.PIPE).stdout.read().decode('UTF-8')
ping = re.search('Latency:\s+(.*?)\s', response, re.MULTILINE)
download = re.search('Download:\s+(.*?)\s', response, re.MULTILINE)
upload = re.search('Upload:\s+(.*?)\s', response, re.MULTILINE)
jitter = re.search('\((.*?)\s.+jitter\)\s', response, re.MULTILINE)
ping = ping.group(1)
download = download.group(1)
upload = upload.group(1)
jitter = jitter.group(1)
try:
f = open('/home/pi/speedtest/speedtest.csv', 'a+')
if os.stat('/home/pi/speed test/speedtest.csv').st_size == 0:
f.write('Date,Time,Ping (ms),Jitter (ms),Download (Mbps),Upload (Mbps)\r\n')
except:
pass
f.write('{},{},{},{},{},{}\r\n'.format(time.strftime('%m/%d/%y'), time.strftime('%H:%M'), ping, jitter, download, upload))
you can save the script. Once our script is complete, we will create a directory in which to keep the speedtest.csv data. Make this directory by typing the command below.
After we have created the necessary directory, we can execute the program. The command below can be used to run our program and see if it works as expected.
Open the newly generated speedtest.csv file to see the results of the script's execution. Let's see whether we can open this document on the RPi with the command below.
You should be able to find anything similar to this in that file. A few rows of records and the column headings.
We'll teach you to easily plot your performance test data using Grafana throughout this section. To conduct data analytics, load up metrics that make some sense of the immense amount of data, and track our applications with the aid of cool configurable panels, we use Grafana, a free software solution that is free and open source. In addition to the fact that Grafana is an open-source platform, we may create our plugins to integrate with a variety of data sources.
Technically known as time series analytics, the technology aids in the study, analysis, and monitoring of data across time. By giving relative data, it aids us in tracking user activity, app behavior patterns, error rate, error kind, and contextual circumstances in operation or a pre-production scenario.
Organizations that are concerned about security or other factors do not have to use the vendor cloud because the project can be implemented on-premise. Over the years, this framework has become an industry standard and is used by companies like PayPal, eBay, Intel, and many more. In a moment, I'll go over some real-world examples from the industry.
Grafana Platform & Enterprise are 2 extra services provided by the Grafana developers for companies in addition to the free software core product. What do they do? The remainder of this post will go into greater detail regarding this. In the meantime, how about we take a closer look at the tool's capabilities and architecture flow, starting with an explanation of what a panel is? & How does it all work? '
They use sources of data like Graphite and Prometheus as well as Influx database and Elastic Search to populate the panels. Grafana has built-in compatibility for a wide range of data sources, including these.
Let's have a look at the fully accessible panel framework's capabilities. Our application's metrics are handled via an open platform. This data can be analyzed through the use of metrics in a variety of ways.
The panel is well-equipped to generate a sense of complicated data, and it is constantly changing. Geo-mapping, heat maps, scatterplots, and more can be displayed with graphs in a variety of ways. Our business needs can be met by a wide range of data presentation possibilities provided by the software.
As soon as a predetermined event occurs, an alert is set up and triggered. Slack or any other communication tool used by the monitoring team might be alerted to these events. Grafana is pre-installed with support for about a dozen different types of databases. And there is a slew of more, all made possible thanks to plugins.
It can be hosted on-premises or in the cloud. Custom data can be retrieved using built-in Graphite support and expressions such as "add," "filter," "average," "minimum," and "maximum" functions. Graphite is a chemical element. Later, I'll address that. Influx database, Prometheus, Elastic Search, and Cloud Monitoring are also included. Up front, I'll cover it all.
A cloud-native, highly accessible, quick, and completely open SaaS metric framework, Grafana Cloud As a result, individuals who don't want to host the solution on their own and prefer to avoid the headache of managing their deployment infrastructure may find this useful. It's a Kubernetes-based service. Prometheus and Graphite back end is supported. This gives us two options: either use Grafana on-premises or both.
Installing Influx Database on your RPi is a prerequisite for this stage of the internet speed monitoring guide. Our connection speed monitoring system sends data to this location, thus we'll be storing it here.
Designed by Influx Intelligence, Influx Database is a free and open-source time series system built in Go. Time series data, such as that collected from sensors and IoT devices, may be accessed quickly and reliably with this system because of its focus on high-availability extraction and retention. As a Time Series Database, Influx Database is capable of storing up to several hundred thousand points each second. A SQL-like query language for time series data, the Influx Database was designed expressly for this purpose.
Shorter duration
Extensive research and analysis
Retention, ingestion, querying, and visualization are now all available through a single application programming interface in Influx Database.
Templates that are simple to create and distribute, thanks to the influx of DB templates
First, we'll fire up the Influx Database CLI tool by typing the command below. Using this application, we will be creating an online repository for our data.
There is no need to enter the passcode and username for Influx Database if you haven't set login. Establish a database with the name "internet speed" in it immediately. After typing CREATE DATABASE, the DB name, and pressing enter, the DB is ready to use.
Creating a user named "speed monitor" will be the next phase in working with the database. The passcode "pass" should be replaced by a more secure one. Privileges are not a concern at this time, as we shall take care of them in the following stage.
To shut off the application, type the command below.
Installing the Python package required to communicate with the Influx DB is the final step.
Create a new Script file to start populating our Influx database now that it has been set up. If you've already read through the previous script, you won't have to go over anything new here.
nano ~/speedtest.py
To get started, we have to include all of the Python packages that we will be using in this file.
import subprocess
from influxdb import InfluxDBClient
operating system and time have been eliminated, as seen. We no longer have to communicate with records, and the Influx database automatically timestamps data, therefore these two libraries are no longer required. After importing the "InfluxDBClient" for our Influx database server, we are ready to use it. The next phase is to launch the Speedtest Command line interface and process the results. Upon completion of this code snippet, we'll have all the information we need.
shell=True, stdout=subprocess.PIPE).stdout.read().decode('utf-8')
ping = re.search('Latency:\s+(.*?)\s', response, re.MULTILINE)
download = re.search('Download:\s+(.*?)\s', response, re.MULTILINE)
upload = re.search('Upload:\s+(.*?)\s', response, re.MULTILINE)
jitter = re.search('\((.*?)\s.+jitter\)\s', response, re.MULTILINE)
ping = ping.group(1)
download = download.group(1)
upload = upload.group(1)
jitter = jitter.group(1)
Now everything gets a little more complicated. This data must be converted to a Py dictionary for us to use it. Because the library wants the information to be presented in a JSON-like form, this is an explanation.
{
"measurement" : "internet_speed",
"tags" : {
"host": "Raspberrytheengineeringprojects"
},
"fields" : {
"download": float(download),
"upload": float(upload),
"ping": float(ping),
"jitter": float(jitter)
}
}
]
In this section, we established our dictionaries by the Influx database data model. "internet speed" is the title we assigned the metric. The tag "host" was also added so that if we were to manage numerous devices within the same DB, we could segregate them. After that, we enter the data we obtained in the preceding line of code, including the download speed, upload speed, and pings.
To make them into numbers, we use the float () method to turn our download, uploads, and pings parameters into strings. Grafana will read these as characters if we don't utilize the float () method. Now that we have all the information we need, we can begin using Influx Database. It is necessary to create an InfluxDBClient object and provide the network information.
Only the hostname, port number, user id, passcode, and DB name are passed to this method. You can refer to the official Python manual for Influx Database if you wish to know what information can be set.
"localhost" should be replaced with the Internet address of your Influx database server if it is hosted elsewhere. Change "pass" to the passcode you created earlier in this article. To send data to our Influx database server, we need to add a block of code like the one below to our existing codebase.
To send data to Influx Database, we only need to do that. Assuming you've entered every bit of code in the document, this should look something like this.
import subprocess
from influxdb import InfluxDBClient
response = subprocess.Popen('/usr/bin/speedtest --accept-license --accept-gdpr',
shell=True, stdout=subprocess.PIPE).stdout.read().decode('UTF-8')
ping = re.search('Latency:\s+(.*?)\s', response, re.MULTILINE)
download = re.search('Download:\s+(.*?)\s', response, re.MULTILINE)
upload = re.search('Upload:\s+(.*?)\s', response, re.MULTILINE)
jitter = re.search('\((.*?)\s.+jitter\)\s', response, re.MULTILINE)
ping = ping.group(1)
download = download.group(1)
upload = upload.group(1)
jitter = jitter.group(1)
speed_data = [
{
"measurement" : "internet_speed",
"tags" : {
"host": "Raspberrytheengineeringprojects"
},
"fields" : {
"download": float(download),
"upload": float(upload),
"ping": float(ping),
"jitter": float(jitter)
}
}
]
client = InfluxDBClient('localhost', 8086, 'speed monitor', pass, 'internet speed')
client.write_points(speed_data)
Save the document to your computer.
The database needs to be displayed in Grafana. All the information will be graphed and shown by using the Grafana application.
It's a fully accessible metric monitoring and data presentation package for people who aren't familiar with it. The purpose of this software is to aid in the visual representation of time-based information. To speed things up, Grafana entrusts most of the heavy lifting to the client, such as generating graphs. Since there are minimal data to analyze, the software can concentrate on giving information that can be used to create graphs.
Grafana is frequently used to keep tabs on system metrics like the temperatures of the equipment and how much of it is being used. In addition, it can be used to graph data, for example, the weather, across time. Grafana is an excellent tool for instantly presenting data from your Raspberry Pi.
It's a good idea to double-check that all of the packages on your RPi are updated before beginning the Grafana installation. The 2 techniques listed below can be used to do this. The packages list will be updated, and all installed applications will be upgraded to the most recent versions using these instructions.
sudo apt upgrade
The Grafana source repo must be added to the RPi before Grafana can be installed. As a prerequisite, we must add an APT password. Using the APT password, you can confirm that the modules you're installing originated from the Grafana packages service and are properly signed. The instruction to include the Grafana APT password to your RPi's keychain is as follows.
Once we've uploaded the password to our Raspberry, we're good to go with the Grafana repo as a resource for our software. Include this repo to the source list by running the command below on your RPi.
The RPi will automatically check the Grafana repo for new packages whenever you launch and upgrade them. An update is necessary because we've added new packages to our list. When using apt to perform an update, the most up-to-date package list is obtained from all available sources. To accomplish this, run the command below in the console of your Raspberry.
Please keep in mind that Grafana can be installed on your RPI. Run the command below to install the newest release of Grafana on your computer.
Getting Grafana to start automatically at startup is the next step we need to take. Grafana includes a systemd service file, which is a godsend for those of us using it on Linux systems. All we have to do is execute the command below to make Grafana start automatically at system startup.
The "grafana-server.service" services record will be enabled by this instruction to a network's service management. The Grafana server's service management will utilize this file as a reference guide. In the console of the Raspberry Pi, enter the following command to begin using Grafana's webserver.
Now that we've installed Grafana on your Pi 4, we can use its web interface to monitor your data. If you have a Raspberry Pi, the first thing we'll need to do is get its Internet address. Grafana on your local area network can be accessed remotely via this Internet protocol. The IP address of your Raspberry Pi may be found by typing the following code.
Static IPs are a good idea if you frequently need to connect to your Raspberry Pi. Make sure you have your Internet Protocol (IP) address available before visiting this URL. A web application for the Grafana dashboard can be found on line 3000 of the Rasp Internet address. "IPADDRESS>" should be replaced with your Internet address from earlier.
When you initially open Grafana, you'll get a login page. When you initially installed Grafana on the RPi, you were given the option of logging in with the default administrator account. The username and passcode are "admin" and "admin," respectively, for this account (1.). However, even though the passphrase is incredibly insecure, we'll be able to alter it right after this one. Grafana's "Login" tab can be clicked once the userid and passcode have been entered.
A new information source must be added to Grafana's web app. ' The "Data Sources" menu selection can be accessed by clicking on the wheel on the left (1.).
The credentials for our DB must then be entered (2.). The Db must be set to "internetspeed" if you closely followed our instructions. Last but not least, the passcode must be the one we mentioned; if you utilize our examples, it is "theengineeringprojects". The Username should be "speedmonitor,". After you've entered all the necessary data, select the "Save & Test" tab (3.)
Making your program run on a regular schedule is as simple as automation. The crontab is the simplest approach to schedule your script to execute regularly. On your RPi, you can change the crontab by typing the command below.
When asked which editor should use, we suggest nano because it's the simplest to learn and the most intuitive. The following cronjob should be added at the bottom of this file. Cronjobs are scheduled to run each half an hour by default. We advise using our Crontab generator if you'd like to experiment with alternative timings.
Jobs are scheduled using Cron, which is built into Unix-like systems like Linux and its numerous variants. It is a time-based mechanism. Using the cron is a common approach to run instructions or bash scripts regularly. "Cron Jobs" refers to tasks that are scheduled using the "cron" utility. While using Unix-based systems like Raspbian, you'll quickly become dependent on cron jobs.
It's easy to use gDrive, a cli program, to transmit to Google Account. Once you've got it established on the smartphone, it's a breeze to use. This instruction will explain to you how to use your personal Google accounts to develop the gDrive program on the RPi. The same procedures can be used to create gDrive for any os, even if this instruction concentrates on the RPi.
The Go engine must be installed on our device before we can assemble the gDrive program. Download the appropriate drivers from the official website whether you're working on a PC or Mac.
If you're working with a Linux distribution like Raspbian, the process becomes a little more complicated. Using a Linux terminal, type one of these commands.
The Raspberry Pi can be used with this.
a 64-bit version of Linux
After downloading the Go libraries, we must now unpack them to the root directory.
sudo tar -C /usr/local -xzf go.tar.gz
Next, we'll see whether we can get the console to talk to Go. If we alter the shell aliases script, we can accomplish this goal. Shell will run automatically the script and pull in our updated path names.
The following lines should be added to the end of this file. With these lines, we may execute the compiler instantly from the cli, without having to specify the directory to the engine.
export PATH=/usr/local/go/bin:$PATH:$GOPATH/bin
Now you may save the script.
We require your Google Cloud Apis details before we can start with the gDrive program compilation. " Your project's name can be found on this webpage (1.). "gDrive-theengineeringprojects" shall be the name of our example.
To save the document, you simply need to type in a title for your program.
Selecting an app type is what we need to do next. We chose "Other" since none of the other options were appropriate for the API's intended use. Once we've done that, we'll need to give this program a name. We'll just call it "gDrive theengineeringprojects" for the sake of simplicity. Once all of the information has been input, click the "Create" tab to begin the process.
We'll need to use git to download gDrive's source code before we can compile it. Before we can proceed, we need to install the git client on our computer. To install Git on a Debian-based operating system like Linux or Raspbian, you may either go to the main Git webpage or use the procedures below.
Just type the command below and we'll be done in no time.
now clone git
The next step is to update the program to reflect the new client password and session id. Make a copy of the "handlers meta.go" file in the cloned subdirectory and edit it with nano.
nano handlers_drive.go
Change the collected details in the following statement of this file. Both your user id and password should be in your possession.
Substitute your login Credential here.
You can use your user password instead
Save all the changes. Now it's time to execute the following code to get the additional modules needed to compile our updated version of gDrive using the Go engine.
To get gDrive working on our device, simply enter the command shown below into your terminal.
It's time to get this thing working on the command line, so let's get started! We need to relocate the file to the root directory to use the gdrive inside the cli. To relocate the executables, type the command below.
The final step is to provide the gdrive file with the ability to run.
Now that your Google account is linked to the app, we can test the program gDrive. The gdrive instruction and the "list" parameter are required to get things started.
Following gDrive's list statement, you will be informed that authorization is necessary. There needs to be a Hyperlink at the bottom of the message. Using your Google acc, users must visit this Address and sign in. You'll get a security code if you perform the next few steps on the internet browser. Enter the verification code that you just copied into the terminal.
GDrive has been successfully installed onto your device if a listing of files is displayed. To see the ids for each of your directories, you can use this command. Using the IDs listed above, you can sync a specific folder. The command below can be used to test syncing a folder. You can replace Folder> with the path to your synchronized folders.
The identification of a directory that you obtained with the grdive listing commands must be substituted for GOOGLEFOLDERID>.
Uploading Speed Test Data to Google Drive
Now that gDrive is installed on the RPi, we're ready to collect some speed test results. Using gDrive, establish a new directory on the Google drive account for our speedtest.csv record. This will be our starting point. This next terminal command will allow us to accomplish this.
A notification stating that the subdirectory has been established will be displayed as a result of running this command. This mail will also provide you with your identification number. Write this Identification down someplace safe; we'll need it in a few stages. We may now utilize the subdirectories Identification to add a file to it, as the directory has been created. The speedtest.csv record will be used in this experiment. Be careful to substitute YOUR FOLDER ID with the identification you received in the previous phase before running the command below.
The command prompt should display something like the one below during the first sync. Messages such as this one inform you that document has been successfully transferred to your Onedrive.
Automating your Raspberry Connection Speed Monitoring is the following main task related to it. We'll be building a shell script to automate the process. Crontab will use this script to run it regularly. Use the following Unix commands on the RPi to get started developing the shell script.
The following lines are what we'd like to include in this document. Your Google storage subdirectories unique ID must be replaced by YOUR FOLDER Identification.
python3 /home/pi/speedtest.py
/usr/local/bin/gdrive sync upload /home/pi/speedtest YOUR_FOLDER_ID
Save the script. Our shell script needs to be granted permission to run before we can set up a crontab in which to run it. By entering the command below into the prompt, we can accomplish our goal!
We're now ready to set up the crontab now that everything is finished. Start by executing the command below on the RPi to begin modifying the crontab. When prompted, choose Nano as your editor of choice.
At the end of the document, paste the following code. This command tells crontab to execute our shell scripts once every hour, which it will do. Our Crontab generator can help you come up with new values for the crontab if you'd like.
0 * * * * /home/pi/speedtest.sh
We learned how to set up a pi 4 internet connection test monitoring in this article. We also learned how to set up the internet monitoring system's influx database and grafana application. Now you can experiment with other servers to see if you can enhance the speed test's precision and performance. We're going to use our Raspberry Pi 4 to develop a Wi-Fi gateway in the next tutorial.
Thank you for joining us for yet another session of this series on Raspberry Pi programming. In the preceding tutorial, we constructed a personal Twitter bot using Tweepy, a Py framework for querying the Twitter application programming interface. We also constructed a Response to robot mentions that would post a response to everybody's tweet mentioning it with a certain keyword. However, in this tutorial, we will implement a security system using a motion sensor with an alarm.
This is what it looks like:
PIR Motion Sensors can be implemented with RPi by understanding how it is connected to a Raspberry Pi. Whenever the motion sensor detects human movement, an alarm is triggered in this project and the LEDs blink. You may create a simple motion-detection alarm using this interface.
Infrared Motion Detectors or PIR Sensors are Motion Sensors that use Infrared Radiation to detect movement.
Infrared rays are emitted by anything with a temperature higher than absolute zero, be it life or non-living. Humans are unable to see infrared radiation because its wavelength is longer than the wavelength of visible light.
That's why PIR Sensors are designed to pick up on those infrared rays. Due to their wide range of uses, such as motion sensors for security systems and intruder alert devices
"Passive" in motion sensor refers to the fact that it doesn't produce any radiant rays of its own, but rather detects it when other things emit infrared radiation. This is in contrast to active detectors, which perform both the generation of infrared waves and the detection of these waves simultaneously.
For this project, we used a motion detector that included an infrared sensor, a BISS0001 integrated circuit, and other parts.
The 3 pins on the motion sensor are used for power, data, and ground. There are two potentiometers on the Motion Sensor that may be used to modify both the sensor's sensitivity and the period it remains high on sensing a body movement.
A key role in directing infrared rays onto the sensor is played by the Fresnel lens overlaying the Pyroelectric Sensor. This lens allows the PIR Sensor to detect things at an angle of 1200 degrees. The sensor has an 8-meter detection range, meaning it can pick up on human movement within that distance.
Two potentiometers are provided for fine-tuning the sensor and output timing, as previously described.
With the aid of a potentiometer, you may modify the sensor's sensitivity. The distance can be changed between 3m and eight meters. To increase the detecting distance, spin the Potentiometer in a clockwise motion and to reduce, rotate it in the opposite direction.
The second potentiometer allows you to choose how long the motion sensor's output remains HIGH. Anywhere from 0.3s to 600s can be used. Turn the POT clockwise to raise the time and the opposite turn to decrease it.
A Motion Sensor based on RPi and Python language has been the goal of this project since the beginning, as stated in the intro.
I have an Infrared Motion Sensor Component in numerous different projects like Automated Lighting using Raspberry and Various Sensors, Automated Door Opening with Arduino and a motion sensor, and GSM Home Automation Security with Pi.
The key advantage of the Infrared Motion Sensor utilizing RPi over the above-described projects is that RPi can be readily connected to the Web and allows Internet of things implementation of the project.
The following figure illustrates the interfaces concerning the Infrared Motion Detector using RPi.
Raspberry Pi 4
PIR Sensor
Speaker
Jumper Wires
Breadboard
Power Supply
Computer
Link the Motion Sensor's Vin and GND connectors to the RPi's 5 volts and GND pins. Use pin11 to attach the Infrared Sensor's DATA Input.
Gnd and pin 3 are where you'll want to connect the led. As soon as the sensor is triggered, these LEDs will come on and go off.
Python is used for the programming portion of the project. The Python program for RPi's infrared Motion Sensor is provided below. Insert the program into a new file called motion.py.
import RPi.GPIO as GPIO
import time
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
GPIO.setup(11, GPIO.IN) #Read output from PIR motion sensor
GPIO.setup(3, GPIO.OUT) #LED output pin
while True:
i=GPIO.input(11)
if i==0: #When output from motion sensor is LOW
print("No intruders",i)
GPIO.output(3, 0) #Turn OFF LED
time.sleep(0.1)
elif i==1: #When output from motion sensor is HIGH
print("Intruder detected",i)
GPIO.output(3, 1) #Turn ON LED
time.sleep(0.1)
The operation of the Infrared Motion Sensor with Raspberry Pi is pretty straightforward. If the Infrared sensor senses some body motion, it sets the Data Input to HIGH.
RPI on identifying a 1 on the associated input gpio, will trigger the alarm.
When you purchase a new sensor, it doesn't work. The Trim port is in the default setting, so it's not a sensor issue. Sensitivity of the sensor and trigger duration port if you modify these settings. It's going to start working as planned. Make sure the trigger duration port's knob is on the left as a low trigger duration and the sensitivity port is in the middle.
Infrared Motion Sensor with Raspberry Pi has already been discussed. They include:
Automated house lights
Motion sensing
Intruders notice
Automated door open
Home security systems
When motion is detected by the PIR sensor on the raspberry pi, we will look into how to record video and transmit it to Whatsapp as an alarm. So that we can tell who's in your room right away thanks to the photo.
Enable the camera by going to the Preferences menu and selecting the Raspberry Pi configuration option.
Activating the camera and saving the image will allow us to identify who or what triggered the alarm.
import picamera
from time import sleep
camera = picamera.PiCamera()
camera.capture('image.jpg')
When we run our software, the preceding code will take a picture and put it inside the root directory of the script. This image will be used to identify the intruder that has been detected.
When an alarm system is triggered, there is an alert that must sound. We'll use a loudspeaker instead of a buzzer for our alarm system in this scenario. When the motion sensor is activated, we will play an alarm sound.
import pygame
pygame.mixer.init()
pygame.mixer.music.load("alarm.mp3")
pygame.mixer.music.play()
while pygame.mixer.music.get_busy() == True:
continue
As a bridge python software for video game design, Pygame is an excellent choice. Additionally, it provides sights, sounds, and visualizations that can improve the game that is being created.
Graphics for video games can be generated using a variety of libraries that deal with visuals and sounds. It streamlines the entire game workflow and makes it easier for newcomers who wish to create games.
Copy the code above and save it to a file named alarm.py then run it in the terminal.
python alarm.py
Any internet or mobile app's compatibility with several platforms was a major hurdle to overcome when designing it. It used to be possible to build a link between two pieces of software using Bandwidth or Podium or Telnyx or Zipwhip or similar before Twilio was invented. In recent years, though, Twilio has dominated the competition. Twilio has become the preferred communication API for programmers. Twilio will become clearer to you if you stick around for a time.
Developers can use Twilio's API to communicate with each other in a modern way.
When it comes to creating the ideal client experience, developers have a wealth of tools at their disposal in the form of Twilio's APIs, which the company describes as "a set of building blocks."
It is possible to utilize Twilio to communicate with customers via text message (SMS), WhatsApp, voice, video, and email. Your software only needs to be integrated with the API.
Twilio is a provider of end-to-end solutions for integrating voice and data communication. Twilio is already used by over a billion developers and some of the world's most well-known businesses. The Twilio Communication application programming interface enables web and mobile app developers to integrate voice, message, and video conferencing capabilities. This makes it easier for app developers to communicate with one another.
The API provided by Twilio makes it simple and accessible to communicate across the web. Mobile and web applications can use this service to make phone calls as well as send text messages and multimedia messages (MMS).
You might want to learn more about Twilio and how it works. As a result, Twilio allows enterprises to better understand their customers than any other service. Twilio's primary concept is to acquire clients, get to know them, provide for their needs, and keep them coming back.
Twilio has a worldwide operations center that keeps an eye on carrier networks around the clock to ensure that they are operating at peak efficiency. To keep up with the ever-changing traffic patterns, Twilio's skilled communications engineers are on the job all the time.
They employ real-time feedback from several provider services to make smarter routing decisions based on real-time data on the availability of handsets. The key distinction between Twilio and other application programming interface integration networks is that Twilio's data-centric strategy provides customer engagement service.
Managing a contact center in today's business environment is critical to the success of the company. Businesses can use Twilio to manage their interactions with clients and consumers through a central contact center platform.
Before Twilight, sending mass SMS was a difficult task. Now, the Twilio Message application programming interface is widely used to transmit and receive messages, MMS, and OTT communications worldwide. Users can verify whether or not messages have been delivered using the intelligence tracking services.
For healthcare, virtual classrooms, recruiting, and other uses, Twilio's WebRTC and cloud infrastructure components make it easy for developers to create secure, video, and HD audio applications.
Twilio's ability to run and manage marketing campaigns is another noteworthy but still-evolving feature. Users can examine performance numbers, run campaigns, and view design concepts.
As a result of this trend, Twilio has also seen an increase in voice traffic. Any app, website, or service can use Twilio to make phone calls over the PSTN or SIP. It's easy to use Twilio Programmable Voice to make and manage digital calls for any campaign.
The Twilio SendGrip application programming interface eliminates the issue of emails that never make it to their intended recipient's inbox. Customers and clients will receive your emails with Twilio, so you won't have any worries about them not getting them.
You'll never have to worry about online scams or fraud again using Twilio's verify feature. It is continuously validated by SMS, Voice, email, and push alerts continuously.
Advancing solutions and services provided by Twilio allow for global connectivity. As a result of this connectedness, your company can grow with ease.
Developing and testing your app is made simple using Twilio's WhatsApp Sandbox. Your Twilio mobile number must be approved by WhatsApp before you can seek production access.
You'll learn how to connect your phone to the environment in this section. Select Messaging in the Twilio Console and then Take a look at the WhatsApp section by clicking on it. On the webpage, you'll find the information you need to join our sandbox.
The word "join" will be the first character in the code, followed by a two-word phrase chosen at random.
As soon as Twilio receives your message, you should be able to send and receive text messages on your cell phone without any issues.
Please repeat the sandbox application process for each additional mobile device that you wish to use to test the application
Set up a new Python project in the following section.
mkdir python-whatsapp-pic
cd python-whatsapp-pic
We'll need a virtual space for this project because we'll be installing several Python packages.
Open a terminal on your RPI machine and type:
python -m venv venv
source venv/bin/activate
(venv) $ pip3 install twilio
When using a PC running Windows, execute these commands from a command line.
python -m venv venv
source venv\bin\activate
(venv) $ pip3 install twilio
Python's Twilio library will be used to deliver messages via Twilio.
To authenticate with the Twilio service, we must safely store a few critical credentials. To use Twilio we need to register for an account at the official Twilio website. Create a new account with your email and password. They will send a confirmation message to your email inbox for you to confirm the registration. Go ahead and confirm it. You will also have to verify your WhatsApp phone number to proceed.
Setting environment variables can be done by entering the code below into your terminal:
ssh auth token
export TWILIO_ACCOUNT_SID="your account sid"
export TWILIO_AUTH_TOKEN= "your auth token"
after we have exported the credentials in our environment, the next step is to activate the WhatsApp sandbox to receive messages. Go to the develop mode, then select messaging and send a Whatsapp message.
You will see a message directing you to deliver a text to your phone and if Whatsapp is connected to the computer, it will be easier to click on the link that will be provided below to send the message. Send the message that will be displayed on the chat box on your Whatsapp application.
If it works you will see a message shown below:
This number that will be displayed here is the “from” number that we will use in our code and the “to” number is your Whatsapp number.
Copy the following code into your python file.
from twilio.rest import Client
account_sid = os.environ['TWILIO_ACCOUNT_SID']
auth_token = os.environ['TWILIO_AUTH_TOKEN']
client = Client(account_sid, auth_token)
from_whatsapp_number = 'whatsapp:+14155238886'
to_whatsapp_number = 'whatsapp:+254706911425'
message = client.messages.create(body='The engineering project sent your this image!',
media_url='https://www.theengineeringprojects.com/wp-content/uploads/2022/04/TEP-Logo.png',
from_=from_whatsapp_number,
to=to_whatsapp_number)
print(message.sid)
With this now all we have to do is run our app.py program on the terminal.
python app.py
import pygame
import RPi.GPIO as GPIO
import time
import picamera
camera = picamera.PiCamera()
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
GPIO.setup(11, GPIO.IN) #Read output from PIR motion sensor
GPIO.setup(3, GPIO.OUT) #LED output pin
pygame.mixer.init()
pygame.mixer.music.load("alarm.mp3")
import os
from twilio.rest import Client
account_sid = os.environ['TWILIO_ACCOUNT_SID']
auth_token = os.environ['TWILIO_AUTH_TOKEN']
client = Client(account_sid, auth_token)
from_whatsapp_number = 'whatsapp:+14155238886'
to_whatsapp_number = 'whatsapp:+254706911425'
while True:
i=GPIO.input(11)
if i==0: #When output from motion sensor is LOW
print("No intruders",i)
GPIO.output(3, 0) #Turn OFF LED
pygame.mixer.music.stop()
time.sleep(0.2)
elif i==1: #When output from motion sensor is HIGH
print("Intruder detected",i)
GPIO.output(3, 1) #Turn ON LED
pygame.mixer.music.play()
capture image
camera.capture('intruder.jpeg')
#send image to whatsapp
message = client.messages.create(body='The engineering projects program has detected and intruder!',
media_url='https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Ftse4.mm.bing.net%2Fth%3Fid%3DOIP.q1z1XWRn_WAV4oM-Qr2M2gHaGb%26pid%3DApi&f=1',
from_=from_whatsapp_number,
to=to_whatsapp_number)
print(message.sid)
time.sleep(0.2)
GPIO.cleanup()
break
In this article, you learned to build a security system using a motion detector and raspberry pi. We also learned how to set up Twilio to send and receive Whatsapp messages using the Twilio API. This project can be implemented in so many areas therefore it is a good idea for you it plays around with the code and implements some extra features. In the next tutorial, we are going to build a led cube in raspberry pi 4.