Introduction to STM32 Family

In this guide, we will explain step by step to start programming on the STMicroelectronics (STM) platform, especially the STM32 family.

The term, "STM32" refers to a family of 32-bit microcontroller integrated circuits based on the ARM® Cortex®M processor. The architecture of these CPUs (Central Processing Unit) is ARM (Advanced Risk Machine) which is a particular family of Reduced Instruction Set Computing (RISC). RISC architecture differs from Complex Instruction Set Computing (CISC) for its simplicity that allows you to create processors capable of executing instruction sets with shorter times. Why use STM32? The advantages are many, and now we will list a part of them:

  1. ST offers a wide portfolio of solutions depending on the developer's needs. We can find products that combine different advanced features while maintaining a high level of integration. In fact, we can choose products with high performance, real-time processing, digital signal processing, and low consumption.
  2. Thanks to the availability of different development tools and available support material, the development of a simple or complex project is quite simple and fast, reducing the time to market if you want to develop a product.
  3. Each microcontroller has an integrated processor core, static RAM, flash memory, debug interface, and various peripherals such as GPIO, ADC, DAC, Timer, SPI, UART-USART, I2C, etc.
  4. For every MCU, ST provides the STM32 Nucleo Board that helps anyone who wants to fastly build and test prototypes for new projects with any STM32 MCU. STM32 Nucleo boards share the same connectors and can be easily expanded with many specialized application hardware add-ons (Nucleo-64 includes ST Morpho and Arduino Uno Rev3 connectors, while Nucleo-32 includes Arduino Nano connectors). Another and not insignificant advantage is the cheap cost of these development boards.

In the next paragraph, it will be illustrated how the STM32 is divided to easily identify the one used for your purposes.

Where To Buy?
No.ComponentsDistributorLink To Buy
1STM32 NucleoAmazonBuy Now

STM32 Family

  • To date, the STM32 family has 16 series of microcontrollers divided into four groups in order to cover all the needs of developers.
  • The four groups are Mainstream, Ultra-Low-Power, High-Performance Wireless.

STM32 Mainstream

The STM32 Mainstream has been designed to offer solutions for a wide range of applications where costs, time to market, reliability, and availability are fundamental requirements. They are widely used in real-time control signal processing applications.

There are 5 series in this group:

  1. STM32F1 are microcontrollers based on the ARM Cortex-M3 core. It was launched in 2007 and evolved over time in terms of maximum clock rate, memory depth, and peripherals. In fact, the maximum clock rate has gone from 24 MHz to 72 MHz, static RAM up to 96 kB, and Flash up to 1024 kB. It also supports Thumb-1 and Thumb-2 instruction sets.
  2. STM32F0 are microcontrollers based on the ARM Cortex-M0 core. It was launched in 2012. The maximum clock rate is 48 MHz and includes the SysTick timer. Static RAM up to 32 kB, and Flash up to 256 kB. It also supports Thumb-1 and Thumb-2 instruction sets.
  3. STM32F3 are microcontrollers based on the ARM Cortex-M0 core. It was launched in 2012. The maximum clock rate is 72 MHz and includes the SysTick timer. Static RAM up to 40 kB, and Flash up to 256 kB. It also supports Thumb-1, Thumb-2, Saturated, DSP, FPU instruction sets.
  4. STM32G0 are microcontrollers based on the Cortex-M0/M0+ core. It was launched in 2018. The maximum clock rate is 64 MHz. Static RAM up to 128 kB, and Flash up to 512 kB. It also supports Thumb-1 and Thumb-2 instruction sets. Compared to the older F0 series, it presents improvements in terms of efficiency and performance.
  5. STM32G4 are microcontrollers based on the Cortex-M4F core. It was launched in 2019. The maximum clock rate is 170 MHz. Static RAM up to 128 kB, and Flash up to 512 kB. Thumb-1, Thumb-2, Saturated, DSP, FPU instruction sets. Compared to the older F3/F4 series, it presents improvements in terms of efficiency and performance and higher performance compared to the L4 series.

STM32 Ultra-Low-Power

The STM32 Ultra-Low-Power has been designed to meet the need to develop devices with low energy consumption (such as portable and wearable devices) but maintaining a good compromise with performance.  There are 6 series in this group:

  1. STM32L0 are microcontrollers based on the ARM Cortex-M0+ core. It was launched in 2014. The maximum clock is 32 MHz, static RAM is of 8 kB, and Flash is up to 64 kB. It also supports Thumb-1 and Thumb-2 instruction sets.
  2. STM32L1 are microcontrollers based on the ARM Cortex-M3 core. It was launched in 2010. The maximum clock rate is 32 MHz, static RAM up to 80 kB, and Flash up to 512 kB. It also supports Thumb-1 and Thumb-2 instruction sets.
  3. STM32L4 are microcontrollers based on the ARM Cortex-M4 core. It was launched in 2015. The maximum clock rate is 80 MHz, static RAM is of 64 kB, and Flash is of 1024 kB. It also supports Thumb-1 and Thumb-2, Saturated, DSP, FPU instruction sets.
  4. STM32L4+ are microcontrollers based on the ARM Cortex-M4 core. It was launched in 2016. The maximum clock rate is 120 MHz, static SRAM up to 640 kB, and Flash up to 2048 kB. It also supports Thumb-1 and Thumb-2, Saturated, DSP, FPU instruction sets. It has been enriched with advanced peripherals such as a TFT-LCD controller, Camera interface, etc.
  5. STM32L5 are microcontrollers based on the ARM Cortex-M33F core. It was launched in 2018. The maximum clock rate is 110 MHz, static SRAM up to 640 kB, and Flash up to 2048 kB. It also supports Thumb-1 and Thumb-2, Saturated, DSP, FPU instruction sets.
  6. STM32U5 is the last ultra-low-power series launched (in 2021). It is an evolution of the L series and is based on the ARM Cortex-M33F core. the new 40 nm silicon technology allows to further reduce energy consumption, it also includes advanced cyber security features and graphics accelerators. The maximum clock rate is 160 MHz, static SRAM up to 640 kB, and Flash up to 2048 kB. It also supports Thumb-1 and Thumb-2, Saturated, DSP, FPU instruction sets.

STM32 High-Performance

The STM32 High-Performance has been designed for data processing and data transfer. It also has a high level of memory integration. There are 5 series in this group:

  1. STM32H7 are microcontrollers based on the ARM Cortex-M7F core. It was launched in 2017. The maximum clock is 480 MHz, static RAM is up to 1.4 MB, and Flash is up to 128 kB. It includes Ethernet and some advanced features such as dual Octo-SPI, JPEG codec, etc. It supports Thumb-1 and Thumb-2, Saturated, DSP, FPU instruction sets.
  2. STM32F7 are microcontrollers based on the ARM Cortex-M7F core. It was launched in 2014. The maximum clock is 216 MHz, static RAM is up to 1.4 MB, and Flash is up to 128 kB. It is fully pin-compatible with F4-series. It supports Thumb-1 and Thumb-2, Saturated, DSP, FPU instruction sets.
  3. STM32F4 was the first series of microcontrollers based on the ARM Cortex-M4F core. It was launched in 2011. The maximum clock is up to 180 MHz. It is the first series to have DSP and FPU. It also has faster ADCs, full-duplex I2S and an improved real-time clock. It supports Thumb-1 and Thumb-2, Saturated, DSP, FPU instruction sets.
  4. STM32F2 are microcontrollers based on the ARM Cortex-M3 core. It was launched in 2010. The maximum clock is 120 MHz, static RAM is up to 128 kB, and Flash is up to 1024 kB. It is fully pin-compatible with the F2 series. It supports Thumb-1, Thumb-2 and Saturated instruction sets.

STM32 Wireless

With STM32 Wireless ST adds in the portfolio a platform for wireless connectivity to the portfolio. It has a broad spectrum of frequencies and is used in various industrial and consumer applications.

It has features compatible with multiple protocols which allows it to communicate with different devices in real-time. Now, only two series belong to this group:

  • STM32WB provides Bluetooth®LE 5.2 and IEEE 802.15.4 communication protocols, Zigbee® and Thread, which can work simultaneously or individually.
 
  • STM32WL is the first series that support LoRa® communication.

So, that was all for today. I hope you have enjoyed today's lecture. In the next lecture, I am going to focus on the Nucleo Development board, as we are going to use that in our upcoming tutorials. Thanks for reading. Take care !!! :)

Ten Roofing Maintenance Tips For Lasting Roofline Results

Roofing issues can be overwhelming! Whether you have purchased a new home or have resided in a house for the past twenty years, roofing issues are here to stay. In most cases, these roofing issues include roof leaks, interior water damage, or missing shingles. These problems make roofing maintenance an imperative and attention-seeking job for many homeowners. Now, what to do in this case? Who to call? Well, there are many roofing maintenance firms out there, that can lend you a helping hand in resolving these issues. Also, some roofing maintenance tips can offer lasting results.

1. Examine Your Roof

While buying a new home or commercial space, your focus should be on the roof. The roof is the prime protective layer of your premises. Even if you have been living in the house for years, it is crucial to assess the condition of the roof periodically. Take a trip to your roof once a month. It would be better if experts inspect the roof and predict its life expectancy before you run around with a bucket for leaks.

2. Keep The Clutter Away

Though surrounding landscapes add beauty, the falling leaves and twigs can clog your gutter system. It would prevent proper drainage of rainwater or melting snow. Regular cleaning can avoid damage to your rooftop. While cleaning, you should prefer not to stand on your roof and keep a garbage bag or a bucket to collect all the debris. After picking up large pieces, wash your roof with a hose to flush out dirt. Trimming the trees is another option to minimize the natural debris.

3. Floss The Moss

Your haven cannot be at the mercy of moss. Lichen, moss, and algae need damp habitats to reproduce. Your roof becomes an ideal place for their growth. They have the potential to weaken your entire home. Once moss seeps between the shingles, it can damage the inside panel of the wooden beam that holds up your home. Since mosses have a persistent nature of returning, you would need a permanent professional solution.

4. Stimulate Ventilation

In the absence of proper ventilation, dampness and heat can aggravate roof rotting. The sheathing and rafting lose their effectiveness and threaten the protective layer of your home. It also increases the danger to your interior. Your roof can start seeing tiny holes, which can enlarge over time. Exposure to sufficient sunlight can nip the evil in the bud.

5. Roof Needs Sunscreen

The harmful UV rays and excessive exposure to the sunlight can devastate your roof lining. Speaking to a certified roof expert can mitigate the impact and provide an effective sunscreen solution for your roof.

6. The First Sign of Damage

Your roof is constantly attacked by the environment in the form of natural disasters, stormy weather, high temperatures, etc. Holes in the granules or discoloration of the shingles hint towards damage. The blistering shingles indicate that it is time for a replacement. Ignoring the first signs can lead to extensive damage and expensive repair work.

7. Trim The Trees

Though you love the greenery around you, your roof may not be fond of clinging tree branches. The overhanging branches can spell disaster for your roof. The trees may strike against the shingles and crush your roof during hurricanes and tornadoes. It would be a good idea to trim your trees to safeguard your roof.

8. Attic Insulation For Your Roof

Insulated rooftops lock in the heat during winters and prevent cool air from escaping your indoors during summers. It will help if you ensure effective insulation in and around your attic space. An insulated roof assures a healthier and more durable home that prevents ice damming, moisture build-up, etc.

9. Renew Flashing Seals

Weatherproofing your home is an integral part of roof protection. From time to time, your roof demands the replacement of caulking around the flashings, such as a chimney, vent pipes, etc. Withering caulks can lead to seepage and damage. Scrape the residues of the old caulk and apply new ones to seal the gaps.

10. Prepare For Winters

It is crucial to pay heed to roof maintenance at the onset of winter. Once it starts snowing, it would not be safe to climb up your roof. Your house may be exposed to bad weather if the roof gives in at any time during the winter season. You would have to wait for spring to begin with repair work.

Roof maintenance is serious work. You can take up the task yourself or contact the experts of roofing.

In Oil, New Health And Safety Standards Greet Industry Newcomers

The oil and gas industry is an intrinsically dangerous one. The nature of the work can lead to risks both for on-site workers as well as engineers and remote staff. As a result, Energy News asserts that fatalities and injuries on oil and gas fields are vastly underreported and that there may be a greater risk posed on such sites than ever previously thought. At the same time, advances in legal protections and engineering tools are making the job safer than ever - at least on a surface level. This is good news for engineers looking to carve out a career in the new world of eco-conscious hydrocarbon extraction.

Regulatory drive

Leading the charge towards better conditions for oil and gas workers is the US-wide litigation climate. Both on and off-shore, there are huge pushes towards making health and safety better for the numerous oil and gas workers in hydrocarbon states. Click2Houston highlighted the tragic death of one worker in Texas when a rig fell on him. During the July 2021 Houston oilfield accident lawyer action quickly brought restitution for the family involved, and in turn, brought in a greater level of health and safety scrutiny.

That level of scrutiny is being pushed at national and international levels. CNBC has highlighted how many oil and gas industry consultants are looking for novel ways at which to reduce gas flaring, a process estimated to produce 400 million tons of CO2 every year. Flaring in itself can be dangerous, and poorly monitored or delayed flaring can cause serious incidents. The curious note here is it’s not a direct engineering need that is pushing forward change, but rather the wider pro-environmental agenda being promoted by global governments. This is where novel engineering starts to make an impact.

Smaller impacts

In February, RigZone noted the expansion of wearable health and safety tech and how it was being issued to a wider range of rig employees. Manufacturer Transocean had developed the novel technology to provide a way for risk and repair contractors to undertake critical work while achieving it in a smart fashion - that is, safely, and with the absolute minimum interference both with the operation of the rig and the natural environment around it.

These devices are now brought into the wider engineering field upon rigs and offer a fantastic way for contractors to obtain assurance over their health and safety  The usability of this technology is fairly expansive, and reaches down to the actual drill floor of rigs, for instance. This presents a way for engineers and contractors to ensure their safety - at least until perhaps the most fail-safe way of conducting work makes its mark.

The automated wave

Automation seems to be coming for jobs in every area of industry, and especially so in engineering. Manufacturers are already well acquainted with the huge benefits that robots and their ilk offer in factories across the world - they have truly revolutionized how businesses think about productivity and the safety and role of their workers within that. Now, automation is coming for oil and gas.

According to the Houston Chronicle, automation is set to replace hundreds of thousands of oil and gas engineering jobs. Where roles will be concentrated is, predictably enough, in engineering. Robots can complete much of the simple yet critical work undertaken by contractors, and the onus of the employee will instead be shifting towards engineers. Upkeep of robots and related devices, the continued development of them in line with machine learning and AI, and assurance over their suitability for the job, will be crucial. Achieving this, however, will tick a huge box in the world of health and safety. By taking human beings out of the firing line of risk and danger in the first place, you make huge strides towards an overall improvement in the industry. With automation set to make huge strides by 2030 at the latest, oil and gas businesses are well prepared for the disruption of this technology and the new focus it will place upon engineers performing maintenance.

That, of course, brings its own risks - every engineer knows about the inherent dangers of the shop floor and working with moving parts. However, it takes away a lot of the eminent risk posed by oil and gas, from simple incidents such as unstable, crushing devices, through to the explosions and blowouts experienced from time to time by rigs across the planet. The best way to reduce risk is to remove exposure, and the myriad of engineering tools and techniques being deployed to enhance the health and safety assessment system in oil and gas is helping with this to a great extent. That's good news for engineers entering perhaps one of the most exciting fields there is.

Syed Zain Nasir

I am Syed Zain Nasir, the founder of <a href=https://www.TheEngineeringProjects.com/>The Engineering Projects</a> (TEP). I am a programmer since 2009 before that I just search things, make small projects and now I am sharing my knowledge through this platform.I also work as a freelancer and did many projects related to programming and electrical circuitry. <a href=https://plus.google.com/+SyedZainNasir/>My Google Profile+</a>

Share
Published by
Syed Zain Nasir