Hello readers, I hope you all are doing great.
ESP32 is a powerful chip for Internet of Things applications. This tutorial is also based on one of the ESP32 applications in the field of IoT.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | ESP32 | Amazon | Buy Now |
In this tutorial, we will learn how to update LCD display with new data or input using a web server created with ESP32.
Fig. 1
To achieve the target, we will be using an HTML (Hypertext Markup Language) form to provide web input and then update the text displayed on LCD. The values or input received from the webserver will be further stored inside a variable in the code for further use (to display on LCD).
We have already posted a tutorial on LCD (Liquid Crystal Display) interfacing with ESP32. In that tutorial, we demonstrated how to display the hard-coded data (in the ESP32 module) on LCD.
A web server is computer software and hardware that accepts requests and responds to those requests using HTTP (Hypertext transfer protocol) or HTTPS (HTTP Secure) (HTTP is a network protocol for delivering online content to client user agents).
The ESP32 standalone web server is mobile-enabled and can be accessed from any device with a browser on the local network. B. Mobile phones, computers, laptops, tablets. However, all the devices must be connected to the same WiFi network to which the ESP32 is connected.
There are basically two ways to connect the ESP32 to a 16 * 2 LCD display.
Connecting an LCD display without an I2C adapter is cheap, but this method requires more connection cables and is complicated to implement. On the other hand, using an I2C adapter reduces complexity but increases cost. In this tutorial, you will connect the ESP32 directly without using an I2C adapter.
Table: 1
Fig. 2: ESP32 and 16*2 LCD interfacing
For more details on interfacing 16*2 LCD with ESP32, follow our previous tutorial at www.theengineeringprojects.com
We are using Arduino IDE to compile and upload code into ESP32 module. You must have ESP32 board manager installed on your Arduino IDE to program ESP32 module. To know more about Arduino IDE and how to use it, follow our previous tutorial i.e., on ESP32 programming series. The link is given below:
https://www.theengineeringprojects.com/2021/11/introduction-to-esp32-programming-series.html
ESP32 board manager doesn’t come with inbuilt libraries to create an asynchronous web server. So we need to download the library file from external sources and then add into Arduino IDE.
We need to install two library files:
Once you have successfully downloaded the required libraries, next step it to install or add these libraries in Arduino IDE.
To add the libraries in Arduino IDE, go to Sketch >> Include Library >> Add .zip library and then select the downloaded library files.
Fig. 3: adding necessary libraries
#include < WiFi.h >
#include < AsyncTCP.h >
#include < ESPAsyncWebServer.h >
#include < LiquidCrystal.h > // LCD header file
LiquidCrystal lcd (22, 23, 5, 18, 19, 21 );
AsyncWebServer server ( 80 );
// Enter your netwrok credentials
const char* ssid = "replace this with netwrok SSID";
const char* password = "replace this with Password";
const char* PARAM_INPUT_1 = "data_field1";
const char* PARAM_INPUT_2 = "data_field2";
// HTML web page to handle data input fields
const char index_html[] PROGMEM = R"rawliteral(
<!DOCTYPE HTML> <html> <head>
<title> ESP Input Form </title>
<meta name = " viewport" content="width=device-width, initial-scale=1 ">
<style>
html{ font-family: Times New Roman; display: inline-block; text-align: justify;}
</style>
</head> <body>
<form action="/get">
Data_field1: <input type="text" name="data_field1" >
<input type="submit" value="Post ">
</form> <br>
<form action="/get">
Data_field2: <input type="text" name="data_field2">
<input type="submit" value="Post">
</form><br>
</body></html>)rawliteral";
void notFound(AsyncWebServerRequest *request) {
request->send(404, "text/plain", "Not found");
}
void setup() {
Serial.begin(115200);
WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);
if (WiFi.waitForConnectResult() != WL_CONNECTED) {
Serial.println("WiFi Failed!");
return;
}
Serial.println();
Serial.print("IP Address: ");
Serial.println(WiFi.localIP());
//===set LCD
lcd.begin(16, 2);
lcd.clear();
lcd.setCursor(1,0);
server.onNotFound(notFound);
server.begin();
// Send web page with input fields to client
server.on("/", HTTP_GET, [](AsyncWebServerRequest *request)
{
request->send_P(200, "text/html", index_html);
});
server.on("/get", HTTP_GET, [] (AsyncWebServerRequest *request) {
String inputMessage;
String inputParam;
// GET input1 value
if (request->hasParam(PARAM_INPUT_1))
{
inputMessage = request->getParam(PARAM_INPUT_1)->value();
inputParam = PARAM_INPUT_1;
}
// GET input2 value
else if (request->hasParam(PARAM_INPUT_2))
{
inputMessage = request->getParam(PARAM_INPUT_2)->value();
inputParam = PARAM_INPUT_2;
}
else
{
inputMessage = " No message sent";
inputParam = " none";
}
Serial.println ( inputMessage );
delay( 1000);
lcd.clear();
lcd.print( inputMessage);
request-> send (200, "text/html", " HTTP GET request sent to ESP32("
+ inputParam + "): " + inputMessage +
"<br><a href=\"/\"> Back to Home Page </a>");
});
}
void loop( )
{
}
Fig. 4: Adding header files
Fig. 5: LCD data and control pins
Fig. 6: server port
Fig. 7: Enter Network credentials
Fig. 8
Fig. 9: HTML web page
Fig. 10: HTML form for data input
Fig. 11: Post button.
Fig. 12
Fig. 13: Fetch/obtain the IP adrress
Fig. 14: Set 16*2 LCD
Fig. 15: Initialize the server
Fig. 16: Send web page to client
Fig. 17
Fig. read the input from HTML form
Fig. 18
Fig. 19
Fig. 20
Fig. 21: Select development board and COM port
Fig. 22: web Page
Fig. 23: Enter the Input to ESP32
Fig. 24: Input Updated
Fig. 25: IP address and Web Input on serial monitor.
Fig. 26: String input received from Web server, printed on LCD
This concludes the tutorial. We hope you found this of some help and also hope to see you soon with a new tutorial on ESP32.
Hello readers, I hope you all are doing great. In this tutorial, we will learn how to update a webpage using Server-Sent Events and the ESP32 web server.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | ESP32 | Amazon | Buy Now |
It is a server push technology that enables the client devices to receive automatic updates from a server over HTTP (Hypertext Transfer Protocol) connection. SSE also describes how the server can initiate data transmission towards the client once an initial connection with the client has been established.
We have already posted a tutorial on how to implement Web socket protocol with ESP32 which is also a protocol used to notify events to a web client. Both the Server-Sent Events (SSE) and Web-Socket technologies seem to be quite similar but they are not.
The major difference between the two is that SSE is unidirectional, where the web client can only receive the updates from the ESP32 but it can’t send updates back to ESP32. On the other hand, the Web-socket protocol is bi-directional where both the web client and ESP32 can send and receive updates/events.
Fig. 1 Server-Sent event
The Server-Sent Event process initiates with an HTTP request from the web client or web page to the ESP32 web server. After that, the ESP32 is ready to send updates or events to the web client as they happen. But the web client can’t send any response or data to the ESP32 server after the initial handshake takes place.
Server-sent event technology can be used to communicate an event, GPIO states or to send sensor readings to the web client, whenever a new reading is observed.
For demonstration purpose, we are using a DHT11 sensor with the ESP32 module. ESP32 web server will display two things i.e., temperature and humidity observed using the DHT11 sensor. So, whenever a new reading is being observed, the ESP32 sends the reading to the Web Client over Server-sent events. After receiving the latest sensor reading the client updates the web page data.
Fig. 2 DHT11 sensor
DHT11 is a humidity and temperature sensor that measures its surrounding environment. It measures the temperature and humidity in a given area. It is made up of an NTC (negative temperature co-efficient) temperature sensor and a resistive humidity sensor. It also has an 8-bit microcontroller. The microcontroller is in charge of ADC (analog to digital conversion) and provides a digital output over the single wire protocol.
The DHT11 sensor can measure humidity from 20% to 90% with +-5 percent accuracy (RH or relative humidity) and temperature from 0 degrees Celsius to 50 degrees Celsius with +-2C accuracy.
DHT11 sensors can also be used to build a wired sensor network with a cable length of up to 20 meters.
Table 1
Note: Connect a 10K resistor between data and power (+5V) pin of DHT11 sensor module.
Fig. 3 ESP32 and DHT11 connections/wiring
We are using Arduino IDE to compile and upload code into the ESP32 module. You must have ESP32 board manager installed on your Arduino IDE to program the ESP32 module. To know more about Arduino IDE and how to use it, follow our previous tutorial i.e., on ESP32 programming series. The link is given below:
https://www.theengineeringprojects.com/2021/11/introduction-to-esp32-programming-series.html
Fig. 4 manage libraries
Fig. 5 Install DHT sensor library
ESP32 board manager doesn’t come with inbuilt libraries to create an asynchronous web server. So we need to download the library file from external sources and then add into Arduino IDE.
We need to install two library files:
Once you have successfully downloaded the required libraries, next step it to install or add these libraries in Arduino IDE.
To add the libraries in Arduino IDE, go to Sketch >> Include Library >> Add .zip library and then select the downloaded library files.
Fig. 6 adding necessary libraries
#include <WiFi.h>
#include <AsyncTCP.h>
#include <ESPAsyncWebServer.h>
#include "DHT.h"
#define DHTPIN 4 // Digital pin connected to the DHT sensor
#define DHTTYPE DHT11 // DHT 11
// Initializing the DHT11 sensor.
DHT dht(DHTPIN, DHTTYPE);
// Replace with your network credentials
const char* ssid = "SSID";
const char* password = "password";
// Create AsyncWebServer object on port 80
AsyncWebServer server(80);
// Create an Event Source on /events
AsyncEventSource events("/events");
// Timer variables
unsigned long lastTime = 0;
unsigned long timerDelay = 20000; //20 sec timer delay
//==== Creating web page
const char index_html[] PROGMEM = R"rawliteral(
<!DOCTYPE HTML><html>
<head>
<title>SSE with ESP32 Web Server</title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.7.2/css/all.css" integrity="sha384-fnmOCqbTlWIlj8LyTjo7mOUStjsKC4pOpQbqyi7RrhN7udi9RwhKkMHpvLbHG9Sr" crossorigin="anonymous">
<link rel="icon" href="data:,">
<style>
html {font-family: Times New Roman; display: inline-block; text-align: justify;}
p { font-size: 1.2rem;}
body { margin: 0;}
.topnav { overflow: hidden; background-color: blue; color: white; font-size: 1rem; }
.content { padding: 20px; }
.card { background-color: #ADD8E6; box-shadow: 2px 2px 12px 1px rgba(140,140,140,.5); }
.cards { max-width: 600px; margin: 0 auto; display: grid; grid-gap: 2rem; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); }
.reading { font-size: 1.4rem; }
</style>
</head>
<body>
<div class="topnav">
<h1>Server-Sent Events </h1>
<h2> DHT11 Sensor Data </h2>
</div>
<div class="content">
<div class="cards">
<div class="card">
<p> DHT11 Temperature</p><p><span class="reading"><span id="temp">%TEMPERATURE%</span> °C</span></p>
</div>
<div class="card">
<p> DHT11 Humidity</p><p><span class="reading"><span id="hum">%HUMIDITY%</span> %</span></p>
</div>
</div>
</div>
<script>
if (!!window.EventSource)
{
var source = new EventSource('/events');
source.addEventListener('open', function(e)
{
console.log("Events Connected");
}, false);
source.addEventListener('error', function(e)
{
if (e.target.readyState != EventSource.OPEN)
{
console.log("Events Disconnected");
}
}, false);
source.addEventListener('message', function(e)
{
console.log("message", e.data);
}, false);
source.addEventListener('temperature', function(e)
{
console.log("temperature", e.data);
document.getElementById("temp").innerHTML = e.data;
}, false);
source.addEventListener('humidity', function(e)
{
console.log("humidity", e.data);
document.getElementById("hum").innerHTML = e.data;
}, false);
}
</script>
</body>
</html>)rawliteral";
void setup() {
Serial.begin(115200); //initialize serial monitor
//===set and initialize Wi-Fi
WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);
Serial.print("Connecting to WiFi ..");
while (WiFi.status() != WL_CONNECTED)
{
Serial.print('.');
delay(1000);
}
Serial.print("IP Address: ");
Serial.println(WiFi.localIP()); // print the IP address
//====Initialize DHT11 sensor
dht.begin();
//====Handle Web Server
server.on("/", HTTP_GET, [](AsyncWebServerRequest *request){
request->send_P(200, "text/html", index_html);
});
// Handle Web Server Events
events.onConnect([](AsyncEventSourceClient *client)
{
if(client->lastId())
{
Serial.printf("Client reconnected! Last message ID that it got is: %u\n",
client->lastId());
}
// send event with message "hello!", id current millis
// and set reconnect delay to 1 second
client->send("hello!", NULL, millis(), 10000);
});
server.addHandler(&events);
server.begin();
}
void loop()
{
delay(2000);
float humidity = dht.readHumidity();
// Read temperature as Celsius (the default)
float temperature = dht.readTemperature();
// Check if any reads failed and exit early (to try again).
if (isnan(humidity) || isnan(temperature))
{
Serial.println(F("Failed to read from DHT sensor!"));
return;
}
if ((millis() - lastTime) > timerDelay)
{
// Send Events to the Web Server with the Sensor Readings
events.send("ping",NULL,millis());
events.send(String(temperature).c_str(),"temperature",millis());
events.send(String(humidity).c_str(),"humidity",millis());
Serial.print(F("Humidity(%): "));
Serial.println(humidity);
Serial.print(F("Temp.: "));
Serial.print(temperature);
Serial.println(F("°C "));
}
}
Fig. 7 Header files
Fig. 8 Global declarations
Fig. 9
Fig. 10 Enter Network credentials
Fig. 11 Server port
Fig. 12 Event source
Fig. 13 Timer Variables
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21 Fetch/obtain the IP address
Fig. 22 Initialize DHT sensor
Fig. 23
Fig. 24 Handling server events
Fig. 24 initializing web server
Fig. 25
Fig. 26 If error occurs while reading data from DHT11
Fig. 27 Sending events to the server
Fig. 28 Print Sensor data on the Serial monitor
Fig. 29 Select development board and COM port
Fig. 30
Fig. 31
This concludes the tutorial. I hope you found this of some help and also hope to see you soon with a new tutorial on ESP32.
ESP32 module comes with multiple inbuilt features and peripheral interfacing capability is one of those features. ESP32 module also consists of an inbuilt temperature sensor, but that can only measure the temperature of the ESP32 core not the temperature of the surrounding environment. So it is required to use a peripheral sensor to measure the temperature of the surrounding environment like home, garden, office etc.
Hello readers. I hope you all are doing great. In this tutorial, we will learn how to interface DHT11 (temperature and humidity sensor) with the ESP32. Later in this tutorial, we will discuss how to share the sensor readings obtained from the DHT11 sensor to a web server.
Before moving towards the interfacing and programming part, let’s have a short introduction to the DHT11 sensor, its working and its connections.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | ESP32 | Amazon | Buy Now |
Fig. 1: DHT11 sensor
DHT11 is used to measure humidity and temperature from its surrounding. It monitors the ambient temperature and humidity of a given area. It consists of an NTC (negative temperature co-efficient) temperature sensor and a resistive type humidity sensor. It also consists of an 8-bit microcontroller. The microcontroller is responsible for performing ADC (analog to digital conversion) and provides a digital output over the single wire protocol.
DHT11 sensor can measure humidity from 20% to 90% with +-5% (RH or relative humidity) of accuracy and can measure the temperature in the range of 0 degrees Celsius to 50 degrees Celsius with +-2C of accuracy.
DHT11 sensors can also be used to implement a wired sensor system using a cable length of up to 20 meters.
There are two DHT modules (DHT11 and DHT22) available in the market to measure temperature and humidity. The purpose of both module are same but with different specifications. Like DHT22 sensor provides broader temperature and humidity sensitivity ranges. But DHT22 is costlier than DHT11. So you can prefer to use any of the module, as per your requirements.
Table: 1
Note: Connect a 10K resistor between data and power (+5V) pin of DHT11 sensor module.
Fig. 2: ESP32 and DHT11 connections/wiring
We are using Arduino IDE to compile and upload code into ESP32 module. To know more about Arduino IDE and how to use it, follow our previous tutorial i.e., on ESP32 programming series. Link is given below:
https://www.theengineeringprojects.com/2021/11/introduction-to-esp32-programming-series.html
DHT11 sensor uses single wire protocol to communicate data which requires a precise timing. In order to interface DHT11 sensor with ESP32 module it is required to add necessary libraries. To install the DHT11 sensor library;
Fig. 3: manage libraries
Fig. 4: Install DHT sensor library
#include "DHT.h"
#define DHTPIN 4 // Digital pin connected to the DHT sensor
#define DHTTYPE DHT11 // DHT 11
// Initializing the DHT11 sensor.
DHT dht(DHTPIN, DHTTYPE);
void setup() {
Serial.begin(115200);
Serial.println(F("DHT test string!"));
dht.begin();
}
void loop() {
// Wait a few seconds between measurements.
delay(2000);
// Reading temperature or humidity takes about 250 milliseconds!
// Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
float h = dht.readHumidity();
// Read temperature as Celsius (the default)
float t = dht.readTemperature();
// Read temperature as Fahrenheit (isFahrenheit = true)
float f = dht.readTemperature(true);
// Check if any reads failed and exit early (to try again).
if (isnan(h) || isnan(t) || isnan(f)) {
Serial.println(F("Failed to read from DHT sensor!"));
return;
}
// Compute heat index in Fahrenheit (the default)
float hif = dht.computeHeatIndex(f, h);
// Compute heat index in Celsius (isFahreheit = false)
float hic = dht.computeHeatIndex(t, h, false);
Serial.print(F("Humidity(%): "));
Serial.println(h);
Serial.print(F("Temp.: "));
Serial.print(t);
Serial.println(F("°C "));
Serial.print(F("Temp.: "));
Serial.print(f);
Serial.println(F("°F "));
Serial.print(F("Heat index: "));
Serial.println(hic);
Serial.println(" ");
Serial.print(F("°C "));
Serial.print(hif);
Serial.println(F("°F"));
}
Fig. 5: Add necessary libraries
Fig. 6: Global declarations
Fig. 7
Fig. 9
Fig. 10
Fig. 11
Fig. 12: Heat index
Fig. ESP32 and DHT11 interfacing
Fig. 13: Readings observed from DHT11 sensor
The IoT is the interconnection of physical objects or devices with sensors and software accessing capabilities to communicate data or information over the internet.
To build an IoT network, we need an interface medium that can fetch, control, and communicate data between sender and receiver electronics devices or servers.
Espressif Systems created the ESP32 Wi-Fi chip series. The ESP32 module is equipped with a 32-bit Tensilica microcontroller, 2.4GHz Wi-Fi connectivity, an antenna, memory, and power management modules, and much more. All of these built-in features of this ESP32 module make it ideal for IoT applications.
It is an open data platform for the Internet of Things (Internet of Things). ThingSpeak is a MathWorks web service that allows us to send sensor readings/data to the cloud. We can also visualise and act on the data (calculate the data) sent to ThingSpeak by the devices. Data can be stored in both private and public channels.
ThingSpeak is commonly used for internet of things prototyping and proof of concept systems requiring analytics.
Fig. 14: Getting started for free
Fig. 15: Create new account
Fig. 16: MathWorks Sign in
Fig. 17: New Channel
Fig. 18: Fill the channel details
Fig. 19: Field Chart Edit
https://github.com/mathworks/thingspeak-arduino
Fig. 20: Adding ThingSpeak library
To check whether the library is successfully added or not:
Fig. 21: manage libraries
Fig. 22: Arduino IDE Library manager.
//------style guard ----
#ifdef __cplusplus
extern "C" {
#endif
uint8_t temprature_sens_read();
#ifdef __cplusplus
}
#endif
uint8_t temprature_sens_read();
// ------header files----
#include <WiFi.h>
#include "DHT.h"
#include "ThingSpeak.h"
//-----netwrok credentials
char* ssid = "replace this with your SSID"; //enter SSID
char* passphrase = "replace this with your password"; // enter the password
WiFiServer server(80);
WiFiClient client;
//-----ThingSpeak channel details
unsigned long myChannelNumber = 3;
const char * myWriteAPIKey = "replace this with your API key";
//----- Timer variables
unsigned long lastTime = 0;
unsigned long timerDelay = 1000;
//----DHT declarations
#define DHTPIN 4 // Digital pin connected to the DHT sensor
#define DHTTYPE DHT11 // DHT 11
// Initializing the DHT11 sensor.
DHT dht(DHTPIN, DHTTYPE);
void setup()
{
Serial.begin(115200); //Initialize serial
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, passphrase);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
// Print local IP address and start web server
Serial.println("");
Serial.println("WiFi connected.");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
server.begin();
//----nitialize dht11
dht.begin();
ThingSpeak.begin(client); // Initialize ThingSpeak
}
void loop()
{
if ((millis() - lastTime) > timerDelay)
{
delay(2500);
// Reading temperature or humidity takes about 250 milliseconds!
float h = dht.readHumidity();
// Read temperature as Celsius (the default)
float t = dht.readTemperature();
float f = dht.readTemperature(true);
if (isnan(h) || isnan(t) || isnan(f)) {
Serial.println(F("Failed to read from DHT sensor!"));
return;
}
Serial.print("Temperature (ºC): ");
Serial.print(t);
Serial.println("ºC");
Serial.print("Humidity");
Serial.println(h);
ThingSpeak.setField(1, h);
ThingSpeak.setField(2, t);
// Write to ThingSpeak. There are up to 8 fields in a channel, allowing you to store up to 8 different
// pieces of information in a channel. Here, we write to field 1.
int x = ThingSpeak.writeFields(myChannelNumber,
myWriteAPIKey);
if(x == 200){
Serial.println("Channel update successful.");
}
else{
Serial.println("Problem updating channel. HTTP error code " + String(x));
}
lastTime = millis();
}
}
Fig. 23: Libraries
Fig. 24
Fig. 25: server port
Fig. 26
Fig. 29
Fig. 30: connect to wifi
Fig.31: Fetch and print IP address
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36: Displaying humidity on thingSpeak server
Fig. 37: Displaying Temperature on ThingSpeak server
This concludes the tutorial. I hope you found this of some help and also hope to see you soon with new tutorial on ESP32.
The IoT is the interconnection of physical objects or devices with sensors and software accessing capabilities to communicate data or information over the internet.
To build an IoT network, we need an interface medium that can fetch, control, and communicate data between sender and receiver electronics devices or servers.
Espressif Systems created the ESP32 Wi-Fi chip series. The ESP32 module is equipped with a 32-bit Tensilica microcontroller, 2.4GHz Wi-Fi connectivity, an antenna, memory, and power management modules, and much more. All of these built-in features of this ESP32 module make it ideal for IoT applications.
Hello readers, I hope you all are doing great. In this tutorial, we will learn another application of ESP32 in the field of IoT (Internet of Things). We are using a PIR sensor to detect motion and an Email alert will be generated automatically whenever a motion is being detected.
Fig.1
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | ESP32 | Amazon | Buy Now |
The HCSR-501 sensor module is used with ESP32 to detect the motion. So whenever a motion is detected, the PIR sensor will generate a HIGH output signal which will act as an input to the ESP32 module. In the absence of motion, the output of the PIR sensor will remain LOW. If a HIGH input signal is generated from the PIR sensor module, the LED (either peripheral or inbuilt) will be turned ON and along with that, an Email will be generated to the receiver’s email address as per the program instructions.
Fig. 2 PIR Motion Sensor
PIR stands for Passive Infrared sensors. It detects heat energy in the surrounding environment using a pair of pyroelectric sensors. Both sensors are placed next to each other, and when motion is detected or the signal differential between the two sensors changes, the PIR motion sensor returns a LOW result (logic zero volts). It means that in the code, you must wait for the pin to go low. The desired function can be called when the pin goes low.
There are two potentiometers available in the HCSR-501 PIR motion sensor module. One of the potentiometers is to control the sensitivity to the IR radiations. Lower sensitivity indicates the presence of a moving leaf or a small mouse. The sensitivity can be changed depending on the installation location and project specifications.
The second potentiometer is to specify the duration for which the detection output should be active. It can be programmed to turn on for as few as a few seconds or as long as a few minutes.
PIR sensors are used in thermal sensing applications such as security and motion detection. They're commonly found in security alarms, motion detection alarms, and automatic lighting applications.
The simple mail transfer protocol (SMTP) is an internet standard for sending and receiving electronic mail (or email), with an SMTP server receiving emails from email clients.
SMTP is also used to establish server-to-server communication.
Gmail, Hotmail, Yahoo, and other email providers all have their own SMTP addresses and port numbers.
Fig. 3 SMTP
To send emails, the SMTP protocol, also known as the push protocol, is used, and IMAP, or Internet Message Access Protocol (or post office protocol or POP), is used to receive emails at the receiver end.
The SMTP protocol operates at the application layer of the TCP/IP protocol suite.
When the client wants to send emails, a TCP connection to the SMTP server is established, and emails are sent over the connection.
SMTP commands:
There are various email service providers available like, Gmail, Yahoo, Hotmail, Outlook etc. and each service provider have unique service parameters.
In this tutorial, we are using the Gmail or Google Mail service.
Gmail is the email service provided by Google and Gmail SMTP server is free to access and anyone can access this service, who has a Gmail account.
It is recommended to create a new email account for sending emails using ESP32 or ESP8266 modules.
If you are using your main (personal) email account (for sending emails) with ESP and by mistake something goes wrong in the ESP code or programming part, your email service provider can ban or disable your main (personal) email account.
In this tutorial we are using a Gmail account.
Follow the link to create a new Gmail account : https://accounts.google.com
Fig. 4 create new gmail account
To get access to this new Gmail account, you need to enable Allow less secure apps and this will make you able to send emails. The link is attached below:
https://myaccount.google.com/lesssecureapps?pli=1
Fig. 5 permission to less secure apps
Table 1
Fig. 6 ESP32 and HCSR-501 connections
We are using Arduino IDE to compile and upload code into ESP32 module. To know more about ESP32 basics, Arduino IDE and how to use it, follow our previous tutorial i.e., on ESP32 programming series. Link is given below:
https://www.theengineeringprojects.com/2021/11/introduction-to-esp32-programming-series.html
To enable the email service in ESP32 it is required to download the ESP-Mail-Client Library. This library makes the ESP32 able to send email over SMTP server.
Follow the steps to install the ESP-Mail-Client library:
https://github.com/mobizt/ESP-Mail-Client
Fig. 7 Adding ESP-Mail-Client Library
//To use send Email for Gmail to port 465 (SSL), less secure app option should be enabled. https://myaccount.google.com/lesssecureapps?pli=1
//----Add the header files
#include <WiFi.h>
#include <ESP_Mail_Client.h>
//-----define network credentials
#define WIFI_SSID "public"
#define WIFI_PASSWORD "ESP32@123"
//--add the Server address and port number with respect to a particular email service provider
#define SMTP_HOST "smtp.gmail.com"
#define SMTP_PORT esp_mail_smtp_port_587 //port 465 is not available for Outlook.com
//----The log in credentials
#define AUTHOR_EMAIL "techeesp697@gmail.com"
#define AUTHOR_PASSWORD "Tech@ESP123"
//----The SMTP Session object used for Email sending
SMTPSession smtp;
//---Declare the message class
SMTP_Message message;
//---Callback function to get the Email sending status
void smtpCallback(SMTP_Status status);
const char rootCACert[] PROGMEM = "-----BEGIN CERTIFICATE-----\n"
"-----END CERTIFICATE-----\n";
int inputPin = 4; // connect with pir sensor pin
int pir_output = 0; // variable to store the output of PIR output
void setup()
{
pinMode(inputPin, INPUT);
pinMode(LED_BUILTIN, OUTPUT);
Serial.begin(115200);
pir_output = digitalRead(inputPin);
Serial.println();
Serial.print("Connecting to AP");
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
while (WiFi.status() != WL_CONNECTED)
{
Serial.print(".");
delay(200);
}
Serial.println("");
Serial.println("WiFi connected.");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
Serial.println();
/** Enable the debug via Serial port
* none debug or 0
* basic debug or 1
*
* Debug port can be changed via ESP_MAIL_DEFAULT_DEBUG_PORT in ESP_Mail_FS.h
*/
smtp.debug(1);
/* Set the callback function to get the sending results */
smtp.callback(smtpCallback);
/* Declare the session config data */
ESP_Mail_Session session;
/* Set the session config */
session.server.host_name = SMTP_HOST;
session.server.port = SMTP_PORT;
session.login.email = AUTHOR_EMAIL;
session.login.password = AUTHOR_PASSWORD;
session.login.user_domain = "mydomain.net";
/* Set the NTP config time */
session.time.ntp_server = "pool.ntp.org,time.nist.gov";
session.time.gmt_offset = 3;
session.time.day_light_offset = 0;
/* Set the message headers */
message.sender.name = "ESP Mail";
message.sender.email = AUTHOR_EMAIL;
message.subject = "Email Alert on Motion detection";
message.addRecipient("Anonymous",
"replace this with receiver email adderss");
String textMsg = "Motion Detected!!!!!";
message.text.content = textMsg;
message.text.charSet = "us-ascii";
message.text.transfer_encoding = Content_Transfer_Encoding::enc_7bit;
message.priority = esp_mail_smtp_priority::esp_mail_smtp_priority_low;
/* Set the custom message header */
message.addHeader("Message-ID: <abcde.fghij@gmail.com>");
/* Connect to server with the session config */
if (!smtp.connect(&session))
return;
}
void loop()
{
if (pir_output == HIGH)
{
//----Start sending Email and close the session
if (!MailClient.sendMail(&smtp, &message))
Serial.println("Error sending Email, " + smtp.errorReason());
digitalWrite(LED_BUILTIN, HIGH);
Serial.println("Motion detected!");
Serial.println("Email sent");
}
else {
digitalWrite(LED_BUILTIN, LOW);
Serial.println("No Motion detected!");
}
delay(1000);
ESP_MAIL_PRINTF("Free Heap: %d\n", MailClient.getFreeHeap());
//to clear sending result log
smtp.sendingResult.clear();
}
/* Callback function to get the Email sending status */
void smtpCallback(SMTP_Status status)
{
/* Print the current status */
Serial.println(status.info());
/* Print the sending result */
if (status.success())
{
Serial.println("----------------");
ESP_MAIL_PRINTF("Message sent success: %d\n", status.completedCount());
ESP_MAIL_PRINTF("Message sent failled: %d\n", status.failedCount());
Serial.println("----------------\n");
struct tm dt;
for (size_t i = 0; i < smtp.sendingResult.size(); i++)
{
/* Get the result item */
SMTP_Result result = smtp.sendingResult.getItem(i);
time_t ts = (time_t)result.timestamp;
localtime_r(&ts, &dt);
ESP_MAIL_PRINTF("Message No: %d\n", i + 1);
ESP_MAIL_PRINTF("Status: %s\n", result.completed ? "success" : "failed");
ESP_MAIL_PRINTF("Date/Time: %d/%d/%d %d:%d:%d\n", dt.tm_year + 1900, dt.tm_mon + 1, dt.tm_mday, dt.tm_hour, dt.tm_min, dt.tm_sec);
ESP_MAIL_PRINTF("Recipient: %s\n", result.recipients);
ESP_MAIL_PRINTF("Subject: %s\n", result.subject);
}
Serial.println("----------------\n");
//You need to clear sending result as the memory usage will grow up as it keeps the status, timstamp and
//pointer to const char of recipients and subject that user assigned to the SMTP_Message object.
//Because of pointer to const char that stores instead of dynamic string, the subject and recipients value can be
//a garbage string (pointer points to undefind location) as SMTP_Message was declared as local variable or the value changed.
smtp.sendingResult.clear();
}
}
Note: The exact code cannot be used. As a result, before uploading the code, you must make some changes such as replacing the SSID and password with your network credentials, email address of sender and receiver, SMTP setting parameters for respective email service providers, and so on. We'll go over these details as well during the code description.
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17 Variable for PIR sensor
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25 ‘If motion detected’
Fig. 25 No motion detected
Fig. 26 Clear the email log
Fig. 27 select development board and COM port
Fig. 28 ESP32’s Inbuilt LED is turned ON when a motion is detected
Fig. 29 Serial monitor
Fig.30 received email on motion detection
This concludes the tutorial. We hope you found this of some help and also hope to see you soon with a new tutorial on ESP32.
Hello readers, we hope you all are doing great. Welcome to the 1st lecture of Section 4 in the ESP32 Programming Series. In this section, we will interface the ESP32 module with common Embedded modules(i.e. LCD, Keypad, RTC etc.).
In today's tutorial, we will interface ESP32 with a 16x2 LCD and will display data using both Data Mode and I2C Mode. LCD is the most commonly used embedded module in IoT Projects. It is used to display different types of data i.e. sensor readings, warning messages, notifications etc.
Before going forward, let's first have a look at what is LCD and How it works:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | ESP32 | Amazon | Buy Now |
LCD(Liquid Crystal Display) is a type of electronic display module that is used in a wide variety of applications and devices such as calculators, computers, mobile phones, TVs, etc. There are different types of LCDs available for commercial use. Today, we are going to use the most simple one i.e. 16x2 LCD, shown in the below figure:
This 16x2 LCD has 16 columns and 2 rows, so in total of 32 blocks to display characters. Each Block can display a single character at a time. We can display text in different styles on this LCD i.e. blinking, scrolling etc. Another variant of this LCD is 20x4 LCD and as the name suggests, it has 20 columns and 4 rows and so can display 80 characters at a time. The operating principle of both of these LCDs is quite similar. So, if you are working with a 20x4 LCD, you can still follow this tutorial.
Let's have a look at the LCD pinout:
Both 16x2 and 20x4 LCDs have 16 pins each, used to control 7 write on these LCDs. Among these 16 pins, we have:
LCD Pinout and its working is shown in the below table:
LCD Pinout |
||||
---|---|---|---|---|
Pin No. | Name | Working | ||
1 |
GND(Ground) |
Connected to Ground Terminal. |
||
2 |
Vcc(+5V) |
Connected to +5V. |
||
3 |
VE |
To Control the LCD Contrast. |
||
4 |
RS(Register Select) | If RS=0(GND), LCD operates in Data Mode and we can write characters on the LCD. |
||
If RS=1(+5V), LCD Command Mode gets activated and we can send commands to LCD i.e. erase, new line etc.. |
||||
5 |
R/W(Read & Write) | R/W=0(GND) enables the write operation on the LCD. (So, we normally keep this pin LOW, as we are interested in printing on the LCD). | ||
R/W=1(+5V) enables the read operation on the LCD. |
||||
6 |
EN(Enable) |
Enables the LCD to operate, so it should be kept HIGH. |
||
7 |
Data Pin 0 |
LCD has a total of 8 Data Pins(D0-D7) | ||
8 |
Data Pin 1 |
|||
9 |
Data Pin 2 |
|||
10 |
Data Pin 3 |
|||
11 |
Data Pin 4 |
|||
12 |
Data Pin 5 |
|||
13 |
Data Pin 6 |
|||
14 |
Data Pin 7 |
|||
15 |
LED+ |
Connected to +5V. Turn on the backlight LED. |
||
16 |
LED- |
Connected to GND. |
Now, let's interface the LCD with ESP32:
There are two methods to interface ESP32 with a 16x2 LCD:
In the Data Mode, we use the LCD Data Pins and send data serially, while in the I2C mode, we solder an I2C adapter with the LCD, which acts as a bridge and maps I2C data coming from the microcontroller to the Data Pins. Let's first interface ESP32 and LCD via Data Pins:
As we discussed earlier, LCD has 8 Data Pins used to communicate with the Microcontroller. There are two ways to send data from the Microcontroller to the LCD:
In complex projects, where you are dealing with multiple sensors & modules, its quite difficult to spare 8 Pins for LCD interfacing. So, normally 4-Pin method is preferred, which we are going to design next:
Here are the components required to interface LCD with ESP32:
Now, let's design the ESP32 LCD Circuit Diagram:
[Image]
As you can see in the above figure:
Here's our hardware setup for ESP32 LCD Interfacing:
[Image]
Now let's design the Programming Code to print a simple message on the LCD:
We are using Arduino IDE to compile and upload code in the ESP32 module. If you haven't installed it yet, please read How to Install ESP32 in Arduino IDE. Here's the code to print a message on the LCD:
#include
LiquidCrystal lcd(22,23,5,18,19,21);
void setup()
{
lcd.begin(16, 2);
lcd.clear();
// go to row 0 column 5, note that this is indexed at 0
lcd.setCursor(5,0);
lcd.print("ESP32");
// go to row 1 column 0, note that this is indexed at 0
lcd.setCursor(0,1);
lcd.print (" TheEnggProjects");
}
void loop()
{
}
#include
LiquidCrystal lcd(22,23,5,18,19,21);
In the Setup() Function:
lcd.begin(16, 2);
So, if you are using a 20x4 LCD, you should change its arguments to 20 and 4, as shown below:
lcd.begin(20, 4);
lcd.clear();
lcd.setCursor(5,0);
lcd.print("ESP32");
lcd.setCursor(0,1);
lcd.print (" TheEnggProjects");
As you can see, the LCD code is quite simple and I hope now you can easily print on the LCD. So, let's check the results:
Fig. 6
Sol. : Check the EN pin.
Fig. 7
This concludes the tutorial. We hope you found this of some help and also hope to see you soon with a new tutorial on ESP32.
Hello readers, we hope you all are doing great. Welcome to the 4th lecture of Section 5(ESP32 Sensor) in the ESP32 Programming Series. So far, we have discussed the ESP32 built-in sensors in this section. Today, we are going to interface an external embedded sensor(i.e. PIR Sensor) with the ESP32 Microcontroller board. At the start, we will discuss the basics of a PIR Sensor(HC-SR501) i.e. its pinout and working. After that, we will design a simple project to detect the motion with a PIR sensor and ESP32. Finally, we will display the motion detection results on the ESP32 WebServer.
We will use ESP32 interrupts to detect the motion. Interrupts are used when a microcontroller needs to continuously monitor an event while executing other tasks at the same time. We have already posted a tutorial on ESP32 Interrupts, which includes both software and hardware interrupts. In this tutorial, we are implementing the hardware interrupt(Hardware interrupts are the external interrupts that are caused by an external event). In our project, the hardware interrupt will be generated by the PIR sensor.
PIR motion sensor is mostly used in home automation & security projects, used to enable the system to respond automatically over human presence. Appliances connected to ESP32 will respond automatically(as per the instructions provided) whenever an interrupt is triggered by the PIR motion sensor. Let's first have a look at the working of PIR Sensor:
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | ESP32 | Amazon | Buy Now |
In today's project, we will use the HC-SR501 PIR Sensor to detect the motion. PIR stands for Passive Infrared sensors. It uses a pair of pyroelectric sensors to detect heat energy in the surrounding environment. Both the sensors sit beside each other, and when a motion is detected or the signal differential between the two sensors changes the PIR motion sensor will return a LOW result (logic zero volts). It means that you must wait for the pin to go low in the code. When the pin goes low, the desired function can be called.
PIR Sensor has two variable resistors on its back side, used to adjust the Sensitivity and Detection Range, explained below:
Thermal sensing applications, such as security and motion detection, make use of PIR sensors. They're frequently used in security alarms, motion detection alarms, and automatic lighting applications.
Now let's interface the PIR Sensor with ESP32:
As I mentioned earlier, in today's project, we will design a motion detection project with ESP32 and PIR Sensor. In the first example, we will turn "ON" the LED on motion detection, while in the second project, we will display the results in the ESP32 WebServer.
Here's the list of the components for today's project:
Here's the circuit diagram for motion detection with ESP32 and PIR Sensor:
Now let's design the programming code for motion detection:
We are using Arduino IDE to compile and upload code into the ESP32 module. You need to first Install ESP32 in Arduino IDE to get started. Here's the code for motion detection:
//----Set GPIOs for LED and PIR Motion Sensor
const int led = 23;
const int PIRSensor = 4;
// -----Timer: Auxiliary variables
#define timeSeconds 10
unsigned long now = millis();
unsigned long lastTrigger = 0;
boolean startTimer = false;
//---Checks if motion was detected, sets LED HIGH and starts a timer
void IRAM_ATTR detectsMovement()
{
Serial.println( " MOTION DETECTED " );
Serial.println("Turning ON the LED");
digitalWrite(led, HIGH);
startTimer = true;
lastTrigger = millis();
}
void setup()
{
Serial.begin( 115200 ); // Serial port for debugging purposes
pinMode( PIRSensor, INPUT_PULLUP ); // PIR Motion Sensor mode INPUT_PULLUP
pinMode( led, OUTPUT );
digitalWrite( led, LOW );
attachInterrupt( digitalPinToInterrupt( PIRSensor ), detectsMovement, FALLING ); // Set PIRSensor pin as interrupt, assign interrupt function and set RISING mode
}
void loop()
{
now = millis();
if( startTimer && (now - lastTrigger > ( timeSeconds*500)))
{
Serial.println(" Turning OFF the LED " );
digitalWrite( led, LOW );
startTimer = false;
}
}
//----Set GPIOs for LED and PIR Motion Sensor
const int led = 23;
const int PIRSensor = 4;
//-----Timer: Auxiliary variables
#define timeSeconds 10
unsigned long now = millis();
unsigned long lastTrigger = 0;
boolean startTimer = false;
//---Checks if motion was detected, sets LED HIGH and starts a timer
void IRAM_ATTR detectsMovement()
{
Serial.println( " MOTION DETECTED " );
Serial.println("Turning ON the LED");
digitalWrite(led, HIGH);
startTimer = true;
lastTrigger = millis();
}
void setup()
{
Serial.begin( 115200 ); // Serial port for debugging purposes
pinMode( PIRSensor, INPUT_PULLUP ); // PIR Motion Sensor mode INPUT_PULLUP
pinMode( led, OUTPUT );
digitalWrite( led, LOW );
attachInterrupt( digitalPinToInterrupt( PIRSensor ), detectsMovement, FALLING ); // Set PIRSensor pin as interrupt, assign interrupt function and set RISING mode
}
We have activated the interrupt in the Setup Function, so when the PIR Sensor detects the motion, it will automatically execute the interrupt function, which will turn the LED ON and start the timer.
void loop()
{
now = millis();
if( startTimer && (now - lastTrigger > ( timeSeconds*500)))
{
Serial.println(" Turning OFF the LED " );
digitalWrite( led, LOW );
startTimer = false;
}
}
This concludes the tutorial. I hope you find this tutorial helpful. Thanks for reading. See you soon with a new tutorial on ESP32. Take care !!!
Servo Motors are among the most important actuators in robotics, with applications ranging from RC planes to automated door locks.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | ESP32 | Amazon | Buy Now |
There are several specific types of electric motor applications in which the motor must rotate only at a specific angle. For such applications, we need a special type of motor with such a special arrangement that causes the motor to rotate at a specific angle for a given electric signal (input). The servo motor comes into effect for this purpose.
A servo motor is a linear or rotary actuator that enables accurate control of linear or angular position, acceleration, and velocity. It is made up of a motor and a sensor for position feedback. It also necessitates a fairly sophisticated controller, which is frequently a dedicated module designed specifically for use with servo motors.
The primary reason to use a servo motor is that it offers angular precision, which means that it will only rotate as far as we want it to before stopping and waiting for the next signal to take action. The servo motor, unlike a standard electric motor, begins to turn as soon as we apply input power to it and continues to rotate until we turn off the power. We cannot restrict the rotational progress of an electric motor, but we can control its speed and turn it on and off. Small servo motors are included in numerous beginner Arduino launcher kits since they are simple to use in small electronic projects and applications.
When compared to an Arduino, interfacing a servo motor to the ESP32 is extremely difficult because it does not support analogWrite(). However, it employs a variety of frequencies and timers, allowing all digital pins to be used as PWM pins and to send signals much faster than any Arduino.
Servo motor consists of three wires;
A servo motor is controlled by sending a PWM or pulse width modulated signal. A servo motor can only turn for a total of 180-degree movement (90 degrees in either direction).
The PWM signal sent to the motor specifies the position of the shaft, and the rotor will turn to the desired position depending on the duration of the pulse sent through the control wire.
We are using Arduino IDE to compile and upload code into the ESP32 module. To know more about Arduino IDE and how to use it, follow our previous tutorial i.e., on the ESP32 programming series.
https://github.com/RoboticsBrno/ServoESP32
#include <Servo.h>
static const int servoPin = 4;
Servo servo1;
void setup()
{
Serial.begin( 115200 );
servo1.attach( servoPin);
}
void loop() {
for(int posDegrees = 0;
posDegrees <= 180;
posDegrees++)
{
servo1.write( posDegrees );
Serial.println( posDegrees );
delay( 20);
}
for(int posDegrees = 180;
posDegrees >= 0;
posDegrees--)
{
servo1.write( posDegrees);
Serial.println( posDegrees);
delay(20);
}
}
Fig.
Fig. Serial monitor output
Fig. ESP32 and servo motor
Let’s create a web server to control the position of the servo motor. We will create a web page containing a slider to control the angle/position of the servo motor’s shaft.
We have also created a tutorial on creating a simple web server with ESP32.
#include <WiFi.h>
#include <Servo.h>
Servo servo1; // create servo object to control a servo
// twelve servo objects can be created on most boards
// GPIO the servo is attached to
static const int servoPin = 13;
// Replace with your network credentials
const char* ssid = "SSID";
const char* password = "PASSWORD";
// Set web server port number to 80
WiFiServer server(80);
// Variable to store the HTTP request
String header;
String valueString = String(5);
int angle_x = 0;
int angle_y = 0;
// Current time
unsigned long currentTime = millis();
// Previous time
unsigned long previousTime = 0;
// Define timeout time in milliseconds (example: 2000ms = 2s)
const long timeoutTime = 2000;
void setup() {
Serial.begin(115200);
servo1.attach(servoPin); // attaches the servo on the servoPin to the servo object
// Connect to Wi-Fi network with SSID and password
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
// Print local IP address and start web server
Serial.println("");
Serial.println("WiFi connected.");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
server.begin();
}
void loop(){
WiFiClient client = server.available(); // Listen for incoming clients
if (client) { // If a new client connects,
currentTime = millis();
previousTime = currentTime;
Serial.println("New Client."); // print a message out in the serial port
String currentLine = ""; // make a String to hold incoming data from the client
while (client.connected() && currentTime - previousTime <= timeoutTime) { // loop while the client's connected
currentTime = millis();
if (client.available()) { // if there's bytes to read from the client,
char c = client.read(); // read a byte, then
Serial.write(c); // print it out the serial monitor
header += c;
if (c == '\n') { // if the byte is a newline character
// if the current line is blank, you got two newline characters in a row.
// that's the end of the client HTTP request, so send a response:
if (currentLine.length() == 0) {
// HTTP headers always start with a response code (e.g. HTTP/1.1 200 OK)
// and a content-type so the client knows what's coming, then a blank line:
client.println("HTTP/1.1 200 OK");
client.println("Content-type:text/html");
client.println("Connection: close");
client.println();
// Display the HTML web page
client.println("<!DOCTYPE html><html>");
client.println("<head><meta name=\"viewport\" content=\"width=device-width, initial-scale=1\">");
client.println("<link rel=\"icon\" href=\"data:,\">");
// CSS to style the slider
// Feel free to change the background-color and font-size attributes to fit your preferences
client.println("<style>body { text-align: justify; font-family: \"Trebuchet MS\", Arial; margin-left:auto; margin-right:auto;}");
client.println(".slider { width: 600px; }</style>");
client.println("<script src=\"https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js\"></script>");
// Styling Web Page
client.println("</head><body><h1>Control Servo via ESP32</h1>");
client.println("<p>Angle: <span id=\"servoPos\"></span></p>");
client.println("<input type=\"range\" min=\"0\" max=\"180\" class=\"slider\" id=\"servoSlider\" onchange=\"servo(this.value)\" value=\""+valueString+"\"/>");
client.println("<script>var slider = document.getElementById(\"servoSlider\");");
client.println("var servoP = document.getElementById(\"servoPos\"); servoP.innerHTML = slider.value;");
client.println("slider.oninput = function() { slider.value = this.value; servoP.innerHTML = this.value; }");
client.println("$.ajaxSetup({timeout:2000}); function servo(pos) { ");
client.println("$.get(\"/?value=\" + pos + \"&\"); {Connection: close};}</script>");
client.println("</body></html>");
//GET /?value=180& HTTP/1.1
if(header.indexOf("GET /?value=")>=0) {
angle_x = header.indexOf('=');
angle_y = header.indexOf('&');
valueString = header.substring(angle_x+1, angle_y);
//Rotate the servo
servo1.write(valueString.toInt());
Serial.println(valueString);
}
// The HTTP response ends with another blank line
client.println();
// Break out of the while loop
break;
} else { // if you got a newline, then clear currentLine
currentLine = "";
}
} else if ( c != '\r' ) { // if you got anything else but a carriage return character,
currentLine += c; // add it to the end of the currentLine
}
}
}
// Clear the header variable
header = "";
// Close the connection
client.stop();
Serial.println("Client disconnected.");
Serial.println(" ");
}
}
Fig.
Fig.
Fig.
Fig.
Fig
Fig.
Fig.
Fig.
Fig. Close the connection
Fig. Serial Monitor
Fig. Web Page
This concludes the tutorial. I hope you found this of some help and also to see you soon with a new tutorial on ESP32.
We are familiar with multiple features of the ESP32 module. Like Wi-Fi capabilities, classic Bluetooth, Bluetooth low energy (BLE), inbuilt sensors etc.
Hello readers, I hope you all are doing great. We have already mentioned in our previous tutorials that, ESP32 is also featured with a Dual-Core Processor. Which provides better performance and efficiency.
In this tutorial, we will learn how to use ESP32’s dual cores. ESP32 has two (32-bit each) Tensilica Xtensa LX6 microprocessors namely, core0 and core1 which makes it a powerful dual-core microcontroller and hence stands apart from its predecessors.
When we compile and upload a code using Arduino IDE, we do not have to worry about which core executes the code. It just runs.
Fig. 1 ESP32 dual-core processor
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | ESP32 | Amazon | Buy Now |
A FreeRTOS (real-time operating system) firmware is already available in the ESP32 module. FreeRTOS is helpful in improving the system performance and managing the resources of the module. FreeRTOS allows users to handle several tasks like measuring sensor readings, making a network request, controlling motor speed etc. all of them run simultaneously and independently.
FreeRTOS offers multiple APIs for different applications. Those APIs can be used to create tasks and make them run on different cores. You need to create tasks to assign a particular part of code to a specific core. You can also prioritize that on which core the code will run. Priority value starts with level_0.
Whenever we run a code on Arduino IDE, it runs on core_1 by default.
There is a function you can use to check on which core the code is running on.
xPortGetCoreID()
Run the following code in Arduino IDE:
void setup(){
Serial.begin(115200);
Serial.print( " setup() is running on: Core_" );
Serial.println( xPortGetCoreID() );
delay(1000);
}
void loop()
{
Serial.print( " loop() is running on: Core_" );
Serial.println( xPortGetCoreID() );
delay(1000);
}
Fig. 2 Serial Monitor
From the results on the serial monitor, you can see that both setup() function and loop() function are running on core_1.
Fig. 3
This function takes seven arguments:
Fig. 4
For example, we have created a function named task_code(). Inside the task_code() function a for(;;) loop is used which will create an infinite loop. All the instructions to be given for a particular core to perform a particular task like led blinking, sensor readings etc. will be written inside this for(;;) loop.
Fig. 5
You can use the function vTaskDelete() during the code execution to delete a task. This function takes the task handle (task) as an argument.
In this code we will use two LEDs to be processed by different core.
TaskHandle_t task1;
TaskHandle_t task2;
// Assign GPIOs pins to LEDs
const int led1 = LED_BUILTIN;
const int led2 = 25;
void setup() {
Serial.begin(115200 );
pinMode( led1, OUTPUT );
pinMode( led2, OUTPUT );
//create a task that will be executed in the Task1code() function, with priority 1 and executed on core 0
xTaskCreatePinnedToCore(task_1code, // Task function.
"Task1", // name of task.
10000, // Stack size of task
NULL, // parameter of the task
1, // priority of the task
&task1, // Task handle to keep track of created task
1); // pin task to core 1
delay(1000);
//create a task that will be executed in the Task2code() function, with priority 1 and executed on core 1
xTaskCreatePinnedToCore(task_2code, //Task function.
"task2", //name of task.
10000, //Stack size of task
NULL, //parameter of the task
1, //priority of the task
&task2, //Task handle to keep track of created task
0); //pin task to core 0
delay(1000);
}
//task_1code: blinks an LED every 1000 ms
void task_1code( void * pvParameters ){
Serial.print( "task1 running on: core " );
Serial.println( xPortGetCoreID() );
for(;;)
{
digitalWrite( led1, HIGH);
delay(1000);
digitalWrite(led1, LOW);
delay(1000);
}
}
//task_2code: blinks an LED every 500 ms
void task_2code( void * pvParameters )
{
Serial.print( "task2 running on: core " );
Serial.println(xPortGetCoreID() );
for(;;){
digitalWrite(led2, HIGH );
delay(500);
digitalWrite(led2, LOW );
delay(500);
}
}
void loop(){
Serial.print( " loop() is running on: Core " );
Serial.println( xPortGetCoreID() );
delay(1000);
}
Fig. 6
Fig. 7
Fig. 8 setup() function
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13 loop function
Components required:
Fig. 14 connecting LED with ESP32
Fig. 15 Results on the serial monitor
This concludes the tutorial. We hope you found this helpful and also hope to see you soon with a new tutorial on ESP32.
Hello readers, I hope you all are doing great. In our previous tutorial, we learnt how to make HTTP POST from ESP32 to the IFTTT server.
In this tutorial, we will learn about another application of the ESP32 module in the field of IoT (Internet of Things). We can publish multiple sensor readings from ESP32 to Google sheets via the IFTTT web service.
IFTTT is used as a third-party web service to integrate Google sheets with ESP32.
Fig. 1
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | ESP32 | Amazon | Buy Now |
We are going to create an applet (on the IFTTT server) that is responsible to integrate the Webhooks and Google Sheets services.
While operating with the IFTTT server there are some services/utilities that we are going to deal with like Applets and Webhooks. Before getting started with the project, let’s first introduce you to those terms:
An Applet is a small application or a utility program, which is used for one or a few simple functions. It connects two or more devices or apps together. An applet provides integration between two devices or services to enable some functionality that those devices or services cannot do alone or on their own. An applet consists of actions and triggers.
Fig. 2
Fig. 3: Creating an Applet
Fig. 4: “If This”
Fig. 5: Search and Select Webhooks
Fig. 6: Receive a Web Request
Fig. 7: Create Trigger
Fig. 8: Then That
Fig. 9: Google Sheets
Fig. 10: Select an Action
Fig. 11: Connect to Google Sheets Service
Fig. 12: Allow IFTTT Service to Access Files of your Google Drive
Fig. 13: Complete Action Fields
Fig. 14: Applet Successfully Created
Before interfacing the IFTTT service (applet) with ESP32, let us test the applet whether it is created successfully or not.
Fig. 15
Fig. 16: Test your Applet
Fig. 17: IFTTT Folder in Google Drive
No external components are required as we are using the ESP32’s inbuilt sensors to take the readings.
Let’s have an overview of the project before writing the Arduino code:
#include <WiFi.h>
// Replace with your SSID and Password
const char* ssid = "SSID";
const char* password = "Password";
// Replace with your unique IFTTT URL resource
const char* serverName = "https://maker.ifttt.com/trigger/replace_this_with_eventName/with/key/replace_this_with_your_unique_key ";
// Maker Webhooks IFTTT
const char* server="maker.ifttt.com";
//----Timer for sleep
uint64_t uS_TO_S_FACTOR = 1000000; // Conversion factor for micro seconds to seconds
uint64_t TIME_TO_SLEEP = 900; //sleep for 15 minutes
void setup()
{
Serial.begin(115200);
delay(100);
Serial.print("Connecting to: ");
Serial.print(ssid);
WiFi.begin(ssid, password);
int timeout = 10 * 4; // 10 seconds
while( WiFi.status() != WL_CONNECTED && ( timeout-- > 0) )
{
delay(200);
Serial.print(".");
}
Serial.println(" ");
if(WiFi.status() != WL_CONNECTED )
{
Serial.println(" Failed to connect, going back to sleep ");
}
Serial.print("WiFi connected in: ");
Serial.print(millis());
Serial.print(", IP address: ");
Serial.println(WiFi.localIP());
makeIFTTTRequest();
// enable timer deep sleep
esp_sleep_enable_timer_wakeup(TIME_TO_SLEEP * uS_TO_S_FACTOR);
Serial.println("Going to sleep now");
esp_deep_sleep_start(); // start deep sleep for 900 seconds (15 minutes)
}
void loop()
{
// sleeping so wont get here
}
void makeIFTTTRequest()
{
Serial.print("Connecting to ");
Serial.print(server);
WiFiClient client;
int retries = 5;
while(!!!client.connect(server, 80) && (retries-- > 0))
{
Serial.print(".");
}
Serial.println();
if(!!!client.connected())
{
Serial.println(" Failed to connect... ");
}
Serial.print(" Request server: ");
Serial.println( serverName );
// Hall sensor values
String jsonObject = String("{\"value1\":\"") +
hallRead() +
"\",\"value2\":\"" + hallRead()
+ "\",\"value3\":\"" +
hallRead() + "\"}";
client.println(String("POST ") + serverName + " HTTP/1.1");
client.println(String("Host: ") + server);
client.println("Connection: close\r\nContent-Type: application/json");
client.print("Content-Length: ");
client.println(jsonObject.length());
client.println();
client.println(jsonObject);
int timeout = 5 * 10; // 5 seconds
while(!!!client.available() && (timeout-- > 0)){
delay(100);
}
if(!!!client.available()) {
Serial.println("No response...");
}
while(client.available()){
Serial.write(client.read());
}
Serial.println("\nclosing connection");
client.stop();
}
Fig. 18: Library Files
Fig. 19: Network Credentials
Fig. 20
Fig. 21
Note: The ESP32 sleep time should not be very short. A very short sleep time can result in the exceeded limit of requests imposed by the IFTTT service.
Fig. 22: Timer
Fig. 23: Serial Monitor
Fig. 24: Wi-Fi
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31: Hall Sensor Readings on Google Sheets
Fig. 32: Serial Monitor
This concludes the tutorial. I hope you found this of some help and also to see you soon with the new tutorial on ESP32.
ESP32 is a powerful chip for Internet of Things applications. This tutorial is also based on another ESP32 application in the field of IoT.
Hello readers, I hope you all are doing great. In the previous tutorial, we learned how to send sensor readings from ESP32 to the cloud (ThingSpeak webserver).
In this tutorial, we will learn to send HTTP POST requests from the ESP32 board to ThingSpeak and IFTTT APIs.
Where To Buy? | ||||
---|---|---|---|---|
No. | Components | Distributor | Link To Buy | |
1 | ESP32 | Amazon | Buy Now |
Fig. 1 Hypertext Transfer Protocol
HTTP stands for hypertext transfer control and it is a protocol for transferring data between a web client and a web server. Hyper text transfer protocol was invented alongside HTML (Hypertext markup language) to create the first interactive, text-based web browser: the original www or World Wide Web.
Server and client communication process over HTTP:
Fig. 2 HTTP POST Request
Hypertext transfer protocol uses particular request methods to execute various tasks. Two mostly used HTTP request methods are: HTTP GET request and HTTP POST request.
HTTP GET request is generated to request data from a specific resource and the HTTP POST request method is used to send data from the client device to the server to create or update resources.
In this tutorial, we will demonstrate only the HTTP POST method with ThingSpeak and IFTTT web services.
Features of the HTTP POST request:
IFTT stands for If This Then That. It is a free web service for making different services like email, weather services, Twitter etc to connect.
IFTTT means if a service is triggered, other IFTTT services will take action.
Fig. 3 IFTTT
IFTTT acts as a bridge between ESP32 and other web services. Some of the tasks the ESP32 board can perform with the IFTTT API service are:
IFTTT comprises Applets and Applets further contains two IFTTT services namely trigger and action.
You can use the applets created by a company or can also create your own applet. To use the IFTTT applet with ESP32, we need to create an applet by ourselves. Such applet will contain Webhooks service to interact directly with ESP32 and other services that you want to use like email, Twitter service etc.
There are cases while using ESP32 with the IFTTT: either ESP32 will trigger the IFTTT to do some task or the IFTTT triggers ESP32 to do some task.
Steps to trigger IFTTT via ESP32
Enter the following link in the web browser: https://ifttt.com
Fig. 4 Creating an Applet
Fig. 5 ” If This”
Fig. 6 Search and Select Webhooks
Fig. 7 Receive a Web Request
Fig. 8 Create Trigger
Fig. 9 Then that
Fig. 10 Selecting a Service
Fig. 11
Fig. 12 To Trigger an Event
Fig. 13 Event Successfully Triggered
#include <WiFi.h>
#include <HTTPClient.h>
//---------Netwrok Credentials
const char* ssid = "SSID";
const char* password = "Password";
const char* serverName = "http://maker.ifttt.com/trigger/ESP32_test/with/key/Enter you API key";
unsigned long lastTime = 0;
unsigned long timerDelay = 15000;
void setup()
{
Serial.begin(115200);
WiFi.begin(ssid, password);
Serial.println("Connecting");
while(WiFi.status() != WL_CONNECTED)
{
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.print("Connected to WiFi network with IP Address: ");
Serial.println(WiFi.localIP());
// Random seed is a number used to initialize a pseudorandom number generator
randomSeed(hallRead());
}
Void Loop()
//Send an HTTP POST request after every 15 seconds
if ((millis() - lastTime) > timerDelay)
{
//Check WiFi connection status
if(WiFi.status()== WL_CONNECTED)
{
WiFiClient client;
HTTPClient http;
// Your Domain name with URL path or IP address with path
http.begin(client, serverName);
// Specify content-type header
http.addHeader("Content-Type", "application/x-www-form-urlencoded");
// Data to send with HTTP POST
String httpRequestData = "value1=" + String(random(25)) + "&value2=" + String(random(25))+ "&value3=" + String(random(25));
// Send HTTP POST request
int httpResponseCode = http.POST(httpRequestData);
/*
// If you need an HTTP request with a content type: application/json, use the following:
http.addHeader("Content-Type", "application/json");
// JSON data to send with HTTP POST
String httpRequestData = "{\"value1\":\"" + String(random(40)) + "\",\"value2\":\"" + String(random(40)) + "\",\"value3\":\"" + String(random(40)) + "\"}";
// Send HTTP POST request
int httpResponseCode = http.POST(httpRequestData);
*/
Serial.print("HTTP Response code: ");
Serial.println(httpResponseCode);
Serial.println("successfully conected to host");
// Free resources
http.end();
}
else
{
Serial.println("WiFi Disconnected");
}
lastTime = millis();
}
}
Fig. Libraries
Fig. Network Credentials
Fig.
Fig.
Fig.
Fig.
Fig
Fig.
Fig.
Fig.
Fig. 14 Serial Monitor
Fig. 15 View Activity
Fig. 16 Received data.
Fig. 17 Email Received from IFTTT Server
We have already posted an article on sending sensor readings from ESP32 to ThingSpeak. In this article, we will learn how to send HTTP POST requests from ESP32 to send JSON data to the ThigSpeak server.
ThingSpeak is a web service operated by MathWorks where we can send sensor readings/data to the cloud. We can also visualize and act on the data (calculate the data) posted by the devices to ThingSpeak. The data can be stored in either private or public channels.
Steps to be followed to access ThingSpeak API:
Fig. 18 Getting Started for Free
Fig. 19 Create New Account
Fig. 20 MathWorks Sign in
Fig. 21 New Channel
Fig. 22 Create a New Channel
//-----------Libraries
#include <WiFi.h>
#include <HTTPClient.h>
//-----------Network Credentials
const char* ssid = "replace with your network SSID";
const char* password = "replace with netwrok password";
// Domain Name with full URL Path for HTTP POST Request
const char* serverName = "http://api.thingspeak.com/update";
// Service API Key
String apiKey = "Write API Key";
unsigned long lastTime = 0;
unsigned long timerDelay = 5000; //to add delay of 5sec
void setup()
{
Serial.begin(115200);
WiFi.begin(ssid, password); //initialize ESP32 wifi module
Serial.println("Connecting");
while(WiFi.status() != WL_CONNECTED)
{
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.print("Connected to WiFi network with IP Address: ");
Serial.println(WiFi.localIP());
Serial.println("Timer set to 10 seconds (timerDelay variable), it will take 10 seconds before publishing the first reading.");
// Random seed is a number used to initialize a pseudorandom number generator
randomSeed(analogRead(25));
}
void loop()
{
//Send an HTTP POST request after every 5 seconds
if ((millis() - lastTime) > timerDelay)
{
//Check the WiFi connection status
if(WiFi.status()== WL_CONNECTED)
{
WiFiClient client;
HTTPClient http;
http.begin( client, serverName );
http.addHeader("Content-Type", "application/json");
String httpRequestData = "{\"api_key\":\"" + apiKey +
"\",\"field1\":\"" +
String(random(30)) + "\"}";
int httpResponseCode = http.POST(httpRequestData);
Serial.print("HTTP Response code: ");
Serial.println(httpResponseCode);
// Free resources
http.end();
}
else {
Serial.println("WiFi Disconnected");
}
lastTime = millis();
}
}
Fig.
Fig.
Fig.
Fig. : data (JSON) Chart on ThingSpeak
This concludes the tutorial. I hope you found this of some help and also to see you soon with the new tutorial on ESP32.