 Hello friends, today’s tutorial is about Introduction to multilevel inverters, which is quite a wide field so I am not gonna discuss everything here. I will post more about it in my coming tutorials. Today, I am gonna through some light on multilevel inverter, i.e. how they operates and will also discuss their types in detail. So, let’s start it.

An inverter, also named as power inverter, is an electrical power device which is used to convert direct current (DC) into alternating current (AC). Using few control circuits and switches, one can get AC at any required voltage and frequency. Inverter plays exactly the opposite role of rectifiers as rectifiers are used for converting alternating current (AC) into direct current (DC). There are different types of inverters available these days. You should also have a look at Pure Sine wave Inverter Design with code and Modified Sine Wave Inverter Design with code. I think you are gonna like that one. Few most commonly used inverter types are:

• Square wave inverters
• Modified sine wave inverters
• Multilevel inverters
• Pure sine wave inverters
• Resonant inverters
• Grid tie inverters
• Synchronous inverters
• Stand-alone inverters
• Solar inverters

We have designed a 3 level Diode Clamped Multilevel Inverter in Simulink MATLAB, which you can buy by clicking on the lower button. As it’s mostly used by the engineering students that’s why we have placed a very small price of \$10 so that they can buy it easily and we also get rewarded for our efforts.

#### Introduction to Multilevel Inverter

A multilevel inverter is a power electronic device which is capable of providing desired alternating voltage level at the output using multiple lower level DC voltages as an input. Mostly a two-level inverter is used in order to generate the AC voltage from DC voltage. Now the question arises what’s the need of using multilevel inverter when we have two-level inverter. In order to answer this question, first we need to look at the concept of multilevel inverter.

#### Concept of Multilevel Inverter

First take the case of a two-level inverter. A two-level Inverter creates two different voltages for the load i.e. suppose we are providing Vdc as an input to a two level inverter then it will provide + Vdc/2 and – Vdc/2 on output. In order to build an AC voltage, these two newly generated voltages are usually switched. For switching mostly PWM is used as shown in the Figure 2.1, reference wave is shown in dashed blue line. Although this method of creating AC is effective but it has few drawbacks as it creates harmonic distortions in the output voltage and also has a high dv/dt as compared to that of a multilevel inverter. Normally this method works but in few applications it creates problems particularly those where low distortion in the output voltage is required. PWM voltage output of a two-level inverter

The concept of multilevel Inverter (MLI) is kind of modification of two-level inverter. In multilevel inverters we don’t deal with the two level voltage instead in order to create a smoother stepped output waveform, more than two voltage levels are combined together and the output waveform obtained in this case has lower dv/dt and also lower harmonic distortions. Smoothness of the waveform is proportional to the voltage levels, as we increase the voltage level the waveform becomes smoother but the complexity of controller circuit and components also increases along with the increased levels. The waveform for the three, five and seven level inverters is shown in the Figure 2.2 where we clearly see that as the levels are increasing, waveform becoming smoother. A three-level waveform, a _ve-level waveform and a seven-level multilevel waveform, switched at fundamental frequency

#### Multilevel Inverter Topologies

There are several topologies of multilevel inverters available. The difference lies in the mechanism of switching and the source of input voltage to the multilevel inverters. Three most commonly used multilevel inverter topologies are:

• Diode Clamped multilevel inverters
• Flying Capacitor multilevel inverters

#### 1. Cascaded H-bridge Multilevel Inverters

This inverter uses several H-bridge inverters connected in series to provide a sinusoidal output voltage. Each cell contains one H-bridge and the output voltage generated by this multilevel inverter is actually the sum of all the voltages generated by each cell i.e. if there are k cells in a H-bridge multilevel inverter then number of output voltage levels will be 2k+1. This type of inverter has advantage over the other two as it requires less number of components as compared to the other two types of inverters and so its overall weight and price is also less. Figure 2.3 shows a k level cascaded H-bridge inverter. One phase of a cascaded H-bridge multilevel inverter

In single phase inverter, each phase is connected to single dc source. Each level generates three voltages which are positive, negative and zero. This can be obtained by connecting the AC source with the DC output and then using different combinations of the four switches. The inverter will remain ON when two switches with the opposite positions will remain ON. It will turn OFF when all the inverters switch ON or OFF. To minimize the total harmonic distortion, switching angles are defined and implemented. The calculations for the measurement of switching angle will remain the same. This inventor can be categorized further into the following types:

• 5 levels cascaded H Bridge Multilevel Inverter
• 9 levels cascaded H Bridge Multilevel Inverter

In 5 level cascaded H Bridge Multilevel Inverters, Two H Bridge Inverters are cascaded. It has 5 levels of output and uses 8 switching devices to control whereas in 9 level cascaded H Bridge Multilevel Inverters, Four H Bridge Invertors are cascaded. It has 9 output levels and use and use 16 switching devices.

• Applications of Cascaded H-bridge Multilevel Inverters

Cascaded H Bridge Multilevel Inverters are mostly used for static var applications i.e., in renewable resources’ of energy and battery based applications. Cascaded H Bridge Multilevel Inverters can be applied as a delta or wye form. This can be understood by looking at the work done by Peng where he used an electrical system parallel with a Cascade H Bridge. Here inverter is being controlled by regulating the power factor. Best application is when we used as photovoltaic cell or fuel cell. This is the example of Parallel connectivity of the H Bridge Multilevel Inverter.

H Bridge can also be used in car batteries to run the electrical components of the car. Also this can be used in electrical braking system of the vehicles.

Scientist and engineers have also proposed the multiplicative factor on Cascade H Bridge Multilevel. It means that rather than using a dc voltage with difference in levels, it uses a multiplying factor between different levels of the multilevel i.e., every level is a multiplying factor of the previous one.

1. Output voltages levels are doubled the number of sources
2. Manufacturing can be done easily and quickly
3. Packaging and Layout is modularized.
4. Easily controllable with a transformer as shown in the Fig 2.5
5. Cheap Cascaded Inverter with transformer

• Every H Bridge needs a separate dc source
• Limited applications due to large number of sources

#### 2. Diode Clamped Multilevel Inverters

Diode clamped multilevel inverters use clamping diodes in order to limit the voltage stress of power devices. It was first proposed in 1981 by Nabae, Takashi and Akagi and it is also known as neutral point converter. A k level diode clamped inverter needs (2k – 2) switching devices, (k – 1) input voltage source and (k – 1) (k – 2) diodes in order to operate. Vdc is the voltage present across each diode and the switch. Single phase diode clamped multilevel inverter is shown in the figure below: One phase of a diode clamped inverter

The concept of diode clamped inverter can better be understood by looking into three phase six level diode clamped inerter. Here the common dc bus is shared by all the phases, use five capacitors and six levels. Each capacitor has a voltage of Vdc and same is the voltage limit of switching devices. One important fact should be noted while considering the diode clamped inverter is that five switches will remain ON at any time. Six level, three phase dc clamped multilevel inverter is shown in the figure below.

Outputs of each phase can be understood by the following table. Here reference voltage is the negative Vo. Condition 0 means switch is OFF and vice versa. Output waveforms of six level dc clamped inverter is shown below:

Vab is the voltage due to the phase lag b and a voltage.

• Applications of Diode Clamped Multilevel Inverters

The most common application of diode clamped multilevel inverter is when a high voltage Dc and Ac transmission lines are interfaced. This can also be used in variable speed control of high power drives. Static variable compensation is also an application of diode clamped multilevel inverters.

• Advantages of Diode Clamped Multilevel Inverters
• Capacitance of the capacitors used is low.
• Back to back inverters can be used.
• Capacitors are pre charged.
• At fundamental frequency, efficiency is high.
• Disadvantages of Diode Clamped Multilevel Inverters
• Clamping diodes are increased with the increase of each level.
• Dc level will discharge when control and monitoring are not precise.

#### 3. Flying Capacitor Multilevel Inverters

The configuration of this inverter topology is quite similar to previous one except the difference that here flying capacitors is used in order to limit the voltage instead of diodes. The input DC voltages are divided by the capacitors here. The voltage over each capacitor and each switch is Vdc. A k level flying capacitor inverter with (2k – 2) switches will use (k – 1) number of capacitors in order to operate. Figure below shows a five level flying capacitor multilevel inverter. A Flying Capacitor Multilevel Inverter with five voltage levels

If we compare above figures, it shows that the number of switches, main diodes and DC-bus capacitors are same in both the cases. The only difference between the two topologies is that the previous one uses clamping diodes in order to limit the voltage while this topology uses flying capacitors for this purpose, and as capacitors are incapable of blocking the reverse voltage, which diodes do, the number of switches also increases. Voltage on each capacitor is differing from the next as it has a ladder structure. Voltage difference between two back to back capacitors determines the voltage in the output frame.

• Advantages of Flying Capacitor Multilevel Inverters

Static var generation is the best application of Capacitor Clamped Multilevel Inverters.

• For balancing capacitors’ voltage levels, phase redundancies are available.
• We can control reactive and real power flow.
• Disadvantages of Flying Capacitor Multilevel Inverters
• Voltage control is difficult for all the capacitors
• Complex startup
• Switching efficiency is poor
• Capacitors are expansive than diodes

1. Gayathri says:

“Introduction to Multilevel Inverters”,was a really useful article. Was searching for these concepts for long. Great Job!
I am currently working on these kind of inverter topologies as a part of my course at a private institution, but often get stuck in designing the pulse buttons for these inverters as I am not aware of the way the switches function in each topology. It would be great if you could help me in designing the pulse buttons using MATLAB and SIMULINK for all the topologies mentioned in this article .

Thanks,
Gayathri

• Pavan kumar says:

Hello Sir,

This is pavan. I have chosen multilevel inverter topic for my project .. conceptually we r good , but practically we have no idea about the simulation .. please help me.

Thanks.

• Akhib khan Bahamani says:

mam kindly post switching frequency of multi level inverter

2. Sumith yellapu says:

Easily understandble to reader -thanks for sharing ur knowledge

3. Rehan Akhtar says:

A.o.a
bhai jan multilevl inverter using PWM technique k bare main b upload kar dain…