Current Sensor Library for Proteus

Hi Friends! Hope you’re well today. Today, I am going to share the Proteus Library of Current Sensor WCS1600. This sensor is not available in the Proteus Components Library and we’re sharing it for the first time.

The Current Sensor WCS1600 is used to measure the current flowing through the circuit and is used in embedded systems and robotics projects. If you are new to this sensor, you must first design its simulation before playing with the hardware. 

Before we move further, let’s have a brief overview of WCS1600 Current Sensor:

Where To Buy?
No.ComponentsDistributorLink To Buy
1LEDsAmazonBuy Now
2ResistorAmazonBuy Now
3ACS712AmazonBuy Now

What is WCS1600 Current Sensor?

WCS1600 comes with a drift linear hall sensor IC which gives precise and accurate values. The hall sensor IC is 9.0 mm in diameter through the hole and is incorporated with a temperature compensation circuit. To measure the passing current, the electric wire of the system should pass through the hole of this sensor.

Using this design, the system designers can monitor the current path of any length without affecting the layout of the original system. The integrated hall IC senses the magnetic field generated when current flows through the wire. That magnetic field is then converted into a proportional voltage.

Features:

  • Product: WCS1600 current sensor.
  • Sensitivity: 22mV/A
  • Low operating current: 3mA
  • Supply Current: 3.5 ~ 6mA
  • Zero Current Vout: 2.5V
  • Bandwidth: 23kHz
  • Isolation voltage: 4000V
  • Supply Voltage: 3 ~ 12V
  • Operating Temp: -20 ~ 125°C
  • Conductor Through Hole: 9.2mm
  • Temperature Drift: +/-0.3 mV/C
  • Output voltage proportional to AC and DC
  • Wide sensing current range 0~100A at 5V volt
  • For easy soldering on PCB, two bronze sticks are used
  • Ratiometric output from the supply voltage

WCS1600 Current Sensor Library for Proteus

  • First, download the Proteus Library zip file for WCS1600 Current Sensor by clicking the link below:

WCS1600 Current Sensor Library for Proteus

Adding Library Files

  • After downloading this zip file, extract it and you’ll find the folder "Proteus Library Files".
  • In this folder, 3 Proteus Library files are available, named:
    • WCS1600TEP.HEX
    • WCS1600TEP.IDX
    • WCS1600TEP.LIB
  • Copy these files and paste them into the Library Folder of Proteus Software, as shown in the below figure:

  • After adding these files to the Library folder, open the Proteus Software, and if you’re already working on it, you need to restart it. 

Note: You should read How to Add Library in Proteus 8, if you are having any issues finding the Library Folder.

Current Sensor in Proteus

In the components section, write ‘WCS1600 Current Sensor’ in the search bar and you’ll get the following result:

Now place this sensor in the Proteus workspace, as shown in the below figure:

You can see in the above figure, this current sensor carries 4 pins as follow:

  • Vcc: 5V is provided to this pin.
  • GND: This pin is grounded.
  • D0: This is the output pin and it goes HIGH when current passes through the hole and will remain LOW when there is no current.
  • A0: This pin will give the analog output.
  • TestPin: As we can't use a current wire in Proteus, so we placed this test pin to indicate current. When this pin is HIGH, means the current is passing through the IC and if it's LOW, means no current. 

Adding Hex File

Now double-click the sensor to open up its Properties Panel, as shown in the below figure:

Go to the ‘Program File’ section and browse for the file WCS1600TEP.HEX which you have already downloaded and placed in the Library Folder of Proteus.

Simulate Current Sensor

  • Now we’ll design a simple circuit to use this WCS1600 Current Sensor in Proteus.
  • The following figure shows the WCS1600 Current Sensor Simulation in Proteus.

  • As you can see in the above figure, I have placed an LC circuit at the analog pin, that's only for the simulation to get the analog value. It won't be used in real hardware.
  • Now run Proteus Simulation. You’ll get the result as shown below.


That’s all for today. Hope you’ve found this Library for Proteus useful. If you’re unsure or have any queries regarding the simulation of this sensor and how to use it in your engineering projects, you are welcome to get in touch with me in the section below. I’ll help you the best way I can. Thank you for reading this tutorial.

Latest Proteus Libraries for Engineering Students V2.0

Hi Friends! Hope you’re well today. Happy to see you around. In this post today, I’ll walk you through Latest Proteus Libraries for Engineering Students V2.0.

We have been designing proteus libraries for our blog readers for quite a while now. You might have visited our Arduino Libraries for Proteus V2.0 and Analog Sensors Libraries for Proteus V2.0. We keep working on those libraries and make sure the bugs are removed and you always get the updated version of those libraries.

We are going to share the most advanced and upgraded version of Proteus Libraries V2.0 we have designed for our readers. These libraries are more robust, fast, and efficient than previous versions. Moreover, we have converted some digital sensors to analog sensors, helping you pick from a wide range of libraries for your projects. If you think some sensors or modules are missing in the Proteus database that should be included, leave your valuable suggestion in the section below. We’ll try our best to design and simulate those in proteus.

Before further ado, let’s jump right in.

Where To Buy?
No.ComponentsDistributorLink To Buy
1LEDsAmazonBuy Now
2ResistorAmazonBuy Now
3ACS712AmazonBuy Now
4DHT11AmazonBuy Now
5DHT22AmazonBuy Now
6DS18B20AmazonBuy Now
7Flame SensorsAmazonBuy Now
8Arduino Mega 2560AmazonBuy Now
9Arduino NanoAmazonBuy Now
10Arduino UnoAmazonBuy Now

Latest Proteus Libraries for Engineering Students V2.0

We’ll be covering both Arduino Libraries for Proteus V2.0 and Analog Sensors Libraries for Proteus V2.0.

Arduino Libraries for Proteus V2.0

Arduino boards are open-source electronic development boards that you can use in your projects. Arduino Libraries for Proteus V2.0 contain the following Arduino boards.

1. Arduino UNO Library for Proteus V2.0

Arduino UNO is a microcontroller board based on the Atmega328 microcontroller. We have designed Arduino UNO Library for Proteus V2.0 which you can download from the link given below. We’ve previously designed the Proteus Library for the Arduino UNO V1.0 board and the below figure shows the comparison of both V1 and V2 Arduino boards. You can see the V2 board is more compact and small-sized compared to the V1 Arduino UNO board.

In this library, we’ve also interfaced LCD with the Arduino UNO. If you find any difficulty in interfacing the board with the LCD, you can approach me in the section below. I’d love to help you the best way I can.

Download the Arduino UNO Library for Proteus V2.0 by clicking the link below:

Download Arduino UNO Library for Proteus V2.0

2. Arduino Mega 1280 Library for Proteus V2.0

Arduino Mega is an electronic board that features an Atmega1280 microcontroller. You can use this board to develop stand-alone electronic projects or you can also incorporate it into embedded projects. Again, the following figure shows a comparison between Arduino Mega 1280 V1 and V2. The V2 board is compact and small-sized compared to the V1 board.

We have developed the Arduino Mega 1280 library for proteus V2.0 which you can download to simulate Arduino Mega 1280 in proteus.

Download the Arduino Mega 1280 Library for Proteus V2.0 by clicking the link below:

Download Arduino Mega 1280 Library for Proteus V2.0

3. Arduino Mega 2560 Library for Proteus V2.0

Arduino Mega 2560 is a sophisticated, application-type microcontroller board that features an Atmega2560 microcontroller. This board comes in handy when you require more input and output pins and more memory space to store the code for your electronic project. We have developed Arduino Mega 2560 Library for Proteus V2.0 to help you simulate this board in the proteus. Moreover, we’ve also interfaced LCD with this board so if you have any questions about it, you can ask me in the section below:

]TEPImg6]

Click the link below and download the Arduino Mega 2560 Library for Proteus V2.0.

Download Arduino Mega 2560 Library for Proteus V2.0

4. Arduino Mini Library for Proteus V2.0

Arduino Mini is a small-sized, powerful open-source microcontroller board based on the Atmega328 microcontroller. The board is 1/6th of the size of the Arduino UNO board and can easily rest on hard-to-reach places. We have designed Arduino Mini Library for Proteus V2.0 that you can download to simulate Arduino Mini in Proteus.

Click the link below and download the Arduino Mini Library for Proteus V2.0:

Download Arduino Mini Library for Proteus V2.0

5. Arduino Pro Mini Library for Proteus V2.0

Arduino Pro Mini is a small-sized microcontroller board that includes an Atmega328 microcontroller. The Proteus library V2.0 is designed for Arduino Pro Mini, moreover, we have also interfaced the board with the LCD 20x4.

Click the link below and download the Arduino Pro Mini Library for Proteus V2.0.

Download Arduino Pro Mini Library for Proteus V2.0

6. Arduino Nano Library for Proteus V2.0

Arduino Nano is a powerful and bread-board-friendly microcontroller board based on ATmega328p/Atmega168 microcontroller. We have developed the Arduino Nano Library for Proteus V2.0 which you can download to simulate Arduino Nano in the Proteus workspace.

Click the link below and download the Arduino Nano Library for Proteus V2.0:

Download Arduino Nano Library for Proteus V2.0

Analog Sensors Libraries for Proteus V2.0

Analog Sensors Libraries for Proteus V2.0 contain the following Analog Sensors.

Vibration Sensor Library for Proteus V2.0

An analog vibration sensor, also known as a piezoelectric, is mainly employed to detect the vibration of industrial machinery. The sensor gets activated if the vibration of the machines goes above the standard value. Vibration sensors are used to monitor the small changes in temperature, acceleration, pressure, and force.

We have done a little work and designed Analog Vibration Sensor Library for Proteus V2.0. Earlier we designed the proteus library for V1 version analog vibration sensors. The V2 version is more robust, compact, and advanced compared to the V1 version. Four vibration sensors are included in the proteus library and they have both digital and analog output pins which you can interface with Arduino boards or microcontrollers.

You can download the analog vibration sensor library for proteus V2.0 by clicking the link below:

Download Vibration Sensor Library for Proteus V2.0

Sound Detector Sensor Library for Proteus V2.0

A sound detector sensor is used to detect the sound in the environment. This sensor is only used for sound detection, not for sound recognition.

We have designed the Sound Detector Sensor Library for Proteus V2.0 that you can download to simulate this sensor in proteus. An LC filter is used on the analog output of the sensor since we need to convert the peak to peak voltage into Vrms. Know that you don’t require this LC filter in the real sensor circuit. We have simulated two sound detector sensors in proteus as they have different outputs because of different voltages on the test pin.

Click the link below and download the Sound Detector Sensor Library for Proteus V2.0:

Download Sound Detector Library for Proteus V2.0

Analog Flex Sensor Library for Proteus

An Analog flex sensor, also known as a bend sensor, is a special type of sensor used to detect the value of bend in the application. This sensor is mainly employed indoor sensors, robot whisker sensors, and stuffed animal toys.

We have developed an analog flex sensor library for proteus that you can download to simulate this sensor in Proteus. Know that Test Pin is included in the pinout of this sensor in proteus only, you won’t find this pin in the real sensor. This pin will determine the value of the bend. The HIGH value at this pin will give the value of bend and the LOW value at this pin will indicate there is no bend. We have also interfaced the Arduino board with the sensor where the analog input pin of the board is connected with the voltage appearing across the voltmeter.

Click the link below and download the Analog Flex Sensor Library for Proteus:

Download Flex Sensor Library for Proteus

Analog PIR Sensor Library for Proteus

PIR (Passive Infrared) sensor is a small, inexpensive, low-power sensor used to detect heat energy in the surrounding. The sensor monitors if the human body has come in or out of the sensor’s range.

We have designed Analog PIR Sensor Library for Proteus that you can download to simulate this sensor in Proteus. Moreover, we’ve also developed a simulation of this PIR sensor with an Arduino board. Know that, besides Arduino boards, you can also interface this sensor with PIC or Atmel microcontrollers. We’ve added four PIR sensors file in the proteus that are the same in terms of working but they come in a different color. Again, a test pin is added in the pinout of this sensor in proteus only, you won’t find this pin in real. This pin is added to sense the motion in the proteus workspace.

Click the link below and download the Analog PIR Sensor Library for Proteus:

Download PIR Sensor Library for Proteus

Water Sensor Library for Proteus

A water sensor is a sensor used to sense the presence of water. The water’s electrical conductivity is measured using this sensor to sense the presence of water. This sensor is widely used in applications where we need to monitor rainfall, water level, and water leakage.

We have designed the water sensor library for proteus which you can download to simulate this sensor in proteus. The Test pin is added to detect the water in the proteus simulation. We’ve also interfaced this sensor with the Arduino board where we have connected the analog input pin of the Arduino board with the output of the water sensor appearing across the voltmeter.

You can download the water sensor library for Proteus by clicking the link below:

Download Water Sensor Library for Proteus

Soil Moisture Sensor Library for Proteus

A soil moisture sensor is employed to analyze the water content in the soil. The sensor uses capacitance to monitor the dielectric permittivity of the soil which defines the function of the water content.

We have designed the Soil Moisture Sensor Library for Proteus where we have connected the test pin with the variable resistor. This resistor is used to define the soil moisture content in the proteus simulation. The maximum resistance on the test pin shows zero volts across the voltmeter, referring to the zero moisture value of the water content. The sensor is also interfaced with the Arduino board as shown below.

Click the link below and download the Soil Moisture Sensor Library for Proteus:

Download Soil Moisture Library for Proteus

IR Proximity Sensor Library for Proteus

The IR proximity sensor is used in robots to detect obstacles. This sensor is widely used for path navigation and obstacle avoidance in electronic projects.

We have designed the IR Proximity Sensor Library for Proteus which you can download to simulate this sensor in Proteus. The Test pin is used for hurdle detection. HIGH value on this pin means there is an obstacle in front and LOW value on this pin means there is no hurdle.

LC filter is included in the simulation which you don’t require in real. This filter is used to convert the Peak to Peak value we get on Proteus into the Vrms value.

[TEPImg16]

You can download the IR proximity sensor library for proteus by clicking the link below:

Download IR Proximity Sensor Library for Proteus

That’s all for today. Hope you find this article helpful. If you have any questions, you can approach me in the section below. I’d love to help you the best way I can. Thank you for reading this article.

Introduction to ACS712

Hello friends, I hope you all are doing great. In today's tutorial, we are gonna have a look at detailed Introduction to ACS712. ACS712 is an AC or DC current sensor, which is used to measure AC or DC current. You should also have a look at Difference between AC & DC Power, that will help. The maximum value of AC and DC which can be measured is 30A, its output current signal can be read via analog I/O port of Arduino. It is also available in 5A and 20A version which provides precise and economical solutions for AC or DC current sensing in industrial and commercial systems. ACS712 consists of a precise and low offset linear Hall sensor circuit with a copper conduction path located near the surface of the die. ACS712  is used in different industrial projects and commercial electrical devices which includes motor control switched mode power supplies, load detection, and management and overcurrent fault protection. In today's post, we will have a look at its working, Arduino interfacing, applications, pinout, etc. I will also share some links where I have interfaced it with other microcontrollers. If you have any query ask in comments I will resolve your problems. So, let's get started with a basic Introduction to ACS712.

Introduction to ACS712

  • ACS712 is a current sensor, which can detect AC or DC current easily. The maximum values of AC or DC which can be detected is 30A. Its operating voltage is 5v.
  • ACS712 is available in small surface mount SOIC8 package. Its lead-frame is plated with 100% matte tin, which is compatible with standard lead-free printed circuit board assembly process.
  • Its package allows easy implementation by the customer, its typical applications are motor control, load detection and overcurrent fault protection.
  • It consists of a precise linear hall circuit with a copper conduction path located near the surface of the die. When applied current passes through this copper conduction path generates a magnetic field which is sensed by Hall integrated circuit (IC) and converted into a proportional voltage.
  • An output of ACS712 has a positive slope (>VIOUT (Q)) when increasing current passes through a primary copper conduction path (from pin 1 and 2, or pin 3 and 4), which is the path used for current sensing. The internal resistance of this conductive path is 1.2 mO. The thickness of the conductor provides survival for a device during the over-current condition.

Now, we discuss ACS712 pinout with a detailed description.

ACS712 Pinout & Description

  • There is three main pinout of ACS712, which are described below with detail description.
Pin# Type                                         Parameters
Pin#1 Vcc This is an input supply pin. 5v is given on this pin.
Pin#2 Output  This is output analog voltage proportional to current.
Pin#3 Ground This is used for ground.
  • For better understanding let's see ACS712 pinout diagram.
  • Now, we discuss ACS712 features.

Features of ACS712

    • These are the main features of ACS712.
      • It measures both DC and AC current.
      • Its operating voltage is 5v.
      • It is available in 5A, 20A and 30A module.
      • It provides isolation from the load.
      • It is easily integrated with MCU.
      • It provides a low noise analog signal path.
      • Its bandwidth is 50 kHz.
      • It is available in low profile SOIC8 package.
      • Its total error is 1.5% at TA = 25°C and 4% at –40°C to 85°C.
      • Its output sensitivity is 66 to 185 mV/A.
      • Its output voltage are proportional to AC or DC currents.
      • It has an extremely stable output offset voltage.
      • Its magnetic hysteresis is nearly zero.

ACS712 Arduino Interfacing

  • It is very easy to interface ACS712 with a microcontroller, you should also have a look at ACS712 Arduino Interfacing for better understanding.
  • In the given circuit diagram, the ACS712 module has two Phoenix terminal connectors with mounting screws as shown in the circuit diagram in green color. At these terminals, wires are connected.
  • In our circuit diagram we are measuring current drawn by the motor, so the wires which are connected with motor is passed through the ACS712 module. Make sure ACS712 module is connected in series with the motor.
  • On the other side of the module, we have three pins, Vcc is connected with +5V power supply and ground is connected to the ground of MCU.
  • Analog voltage given by the ACS712 module can be read using an analog pin of Microcontroller.
  • You can interface ACS712 with almost every microcontroller i.e. Arduino, PIC Microcontroller, 8051 etc.
  • For a better understanding of this module, let's see the circuit diagram.

Applications of ACS712

  • These are some applications of ACS712.
    • It is used for motor speed control.
    • It is used for load detection and management.
    • It is used as switched-mode power supplies.
    • It is used for over current fault protection.
So, that was all about ACS712, If you have any question regarding this module ask in comments, I will resolve your problems. Take care...

DC Current Sensor ACS712 Arduino Interfacing

Hello everyone! I hope you all will be absolutely fine and having fun. Today, I am going to share my knowledge with all of you guys about DC Current Sensor ACS712 Arduino Interfacing. First of all, I would like to tell you about importance of current sensing/measuring. Sensing the amount of current passing through any circuit can be useful in a lot of applications. For example, in low power consuming equipment, current sensing will be helpful to understand the system's impact on its battery life. The current sensing can also be used to make the decisions regarding safety in over current protection circuits. Simply, we can say that sensing and controlling the flow of the current through the circuits is now a fundamental requirement e.g. over current protection circuits, battery chargers, watt meters, power supplies etc.

DC Current Sensor ACS712 Arduino Interfacing

Basically, there are two types of current senors AC and DC. But, in the tutorial,I am going to do the DC Current Sensor ACS712 Arduino Interfacing, and we will learn about the sensing of the DC current. I will use ACS712 DC current sensor for sensing the DC current.
  • You can download the complete Arduino source code there.
  • Download .rar file, extract it and upload code in your Arduino board:

Components Required
Here I am going to tell you about the components necessary for this projects. The list of all the components is given below.
  • Arduino UNO
  • DC Current Sensor (ACS712)
  • DC Load
  • Wero Board
  • Soldering Iron
  • Soldering Gum
  • Jumper wires
  • Power Supply (12V)
  • 20 x 4 LCD
Description of the Components used
[ultimate_spacer height"10"] In this section of the tutorial Interfacing DC Current Sensor with Arduino, I will explain the reasons why I have used the specific components for this project.
  • Arduino UNO acts as the back bone of the project. It manipulates the whole source code uploaded to the board, prints the desired data on the serial monitor and also prints the executed commands on the LCD. You can use the same code of other Arduino boards as well i.e. Arduino Nano, Arduino Pro Mini etc.
  • Power Supply of 12V is used to turn the entire system ON. Because, we can not test and verify our system until we have not switched it ON. Power supply used for this project is shown in the figure. I have used this 9A Battery (I have this available) but you can use 1.5A small battery as well. Battery selection depends on your projects' power consumption.
  • LCD is used to display the digital values of the data which has been printed on the serial monitor of the Arduino software i.e all the executed commands will be printed on the LCD as well. The LCD which I have used for this is shown in the figure.
  • Jumper Wires are used to make the connections of the all the components, in order to make the complete circuit with proper working. Jumper wires are shown in the figure. There are 3 types of Jumper wires available: Male to Male, Male to Female & Female to Female.
  • ACS712 is used to sense the Direct Current (DC) flowing through the any circuit. The DC current sensor used is shown in the figure.
Flow Chart
[ultimate_spacer height="5"]
  • Here, I would like to explain the entire algorithm with the help of a flow chart for DC Current Sensor ACS712 Arduino Interfacing.
  • The flow chart for this project DC Current Sensor ACS712 Arduino Interfacing is shown in the figure.
  • First of all, I have initialized the Serial Port.
  • After that we are reading the value from our current sensor ACS712.
  • Then data will be displayed on the LCD and Serial Monitor.
Circuit Diagram
  • The complete wiring diagram for this project is shown in the figure below.
  • You can run this project properly, by making the circuit first, identical to the circuit diagram shown in the figure above.
  • The digital pin 0 of the Arduino UNO will help us in reading the data from the sensor.
  • The other two pins of the sensor are connected to the supply of 5V and ground respectively as you can see from the above figure.
Source Code Description
  • The source code for this project DC Current Sensor ACS712 Arduino Interfacing is given below.
  • You have to just copy and paste the code given below in your Arduino software after properly interfacing DHT11 with the Arduino.
  • After uploading the code onto your Arduino board you will be able to observe the humidity and temperature and humidity level on serial monitor.
// include the library code:
#include <LiquidCrystal.h> //library for LCD

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(8, 9, 10, 11, 12, 13);

//Measuring Current Using ACS712

const int analogIn = 0; //Connect current sensor with A0 of Arduino
int mVperAmp = 185; // use 100 for 20A Module and 66 for 30A Module
int RawValue= 0;
int ACSoffset = 2500; 
double Voltage = 0; //voltage measuring
double Amps = 0;// Current measuring

void setup() {
  //baud rate
  Serial.begin(9600);//baud rate at which arduino communicates with Laptop/PC
  // set up the LCD's number of columns and rows:
  lcd.begin(20, 4);  //LCD order
  // Print a message to the LCD.
  lcd.setCursor(1,1);//Setting cursor on LCD
  lcd.print("www.TheEngineering");//Prints on the LCD
  lcd.setCursor(4,2);
  lcd.print("Projects.com");
  delay(3000);//time delay for 3 sec
  lcd.clear();//clearing the LCD display
  lcd.display();//Turning on the display again
  lcd.setCursor(1,0);//setting LCD cursor
  lcd.print("Reading Values from");//prints on LCD
  lcd.setCursor(1,1);
  lcd.print("DC Current Sensor");
  lcd.setCursor(5,2);
  lcd.print("ACS 712");
  delay(2000);//delay for 2 sec
}

void loop() //method to run the source code repeatedly
{
 
 RawValue = analogRead(analogIn);//reading the value from the analog pin
 Voltage = (RawValue / 1024.0) * 5000; // Gets you mV
 Amps = ((Voltage - ACSoffset) / mVperAmp);
 
//Prints on the serial port
 Serial.print("Raw Value = " ); // prints on the serial monitor
 Serial.print(RawValue); //prints the results on the serial monitor
 
 lcd.clear();//clears the display of LCD
 delay(1000);//delay of 1 sec
 lcd.display();
 lcd.setCursor(1,0);
 lcd.print("Raw Value = ");
 lcd.setCursor(13,0);
 lcd.print(RawValue);
 
 Serial.print("\t mV = "); // shows the voltage measured 
 Serial.print(Voltage,3); // the '3' after voltage allows you to display 3 digits after decimal point
 
 lcd.setCursor(1,1);
 lcd.print("Voltage = ");
 lcd.setCursor(11,1);
 lcd.print(Voltage,3);
 lcd.setCursor(17,1);
 lcd.print("mV");//Unit for the voltages to be measured
 
 Serial.print("\t Amps = "); // shows the voltage measured 
 Serial.println(Amps,3);// the '3' after voltage allows you to display 3 digits after decimal point
 
 lcd.setCursor(1,2);
 lcd.print("Current = ");
 lcd.setCursor(11,2);
 lcd.print(Amps,3);
 lcd.setCursor(16,2);
 lcd.print("A"); //unit for the current to be measured
 delay(2500); delay of 2.5 sec
}
  • I am going to explain you that how this code is working!
  • Then I have defined the library for LCD.
  • I have defined the pin at which DC current sensor is attached with the Arduino board.
  • Then I have defined the Arduino pins at which the LCD is interfaced.
  • Then by opening the serial port I have started to print the level of temperature and humidity on the serial monitor as well as on the 20×4 LCD.
  • At the end, I have added the delay of few seconds so that the speed of the data to be printed on the serial monitor can be reduced to some extent in order to observe properly.
  • This was the brief description of the source code.
This is all from the tutorial DC Current Sensor ACS712 Arduino Interfacing. I hope you all enjoyed this tutorial. If you face any sort of problem you can ask me anytime in comments without even feeling any kind of hesitation. I will try my level best to solve your issues in a better way, if possible. I will explore Arduino further in my later tutorials. Till then, Take care :)
Syed Zain Nasir

I am Syed Zain Nasir, the founder of <a href=https://www.TheEngineeringProjects.com/>The Engineering Projects</a> (TEP). I am a programmer since 2009 before that I just search things, make small projects and now I am sharing my knowledge through this platform.I also work as a freelancer and did many projects related to programming and electrical circuitry. <a href=https://plus.google.com/+SyedZainNasir/>My Google Profile+</a>

Share
Published by
Syed Zain Nasir