Introduction to ULN2803
Hey Guys! Hope you are doing well. I always take pleasure to keep you updated with valuable information related to information and technology. Today, I'll discuss the detailed
Introduction to ULN2803 which is a relay driver that comes with a high-voltage and high-current Darlington
transistor array. In order to obtain higher current capability, the Darlington pairs are connected in a parallel configuration.
The component is incorporated with eight NPN Darlington pairs, featuring high-voltage outputs with common-cathode clamp
diodes that are directly related to switching inductive loads. Each Darlington pair features a decent amount of collector-current rating i.e. around 500 mA.
You must have a look at
ULN2003 which is almost similar to this IC but comes with 16 pins and can handle 7 relays at a time.
In this post, I'll cover each and everything related to this driver IC: its main features, pinout, working, and applications. Let's dive in.
Introduction to ULN2803
ULN2803 is a high-voltage and high-current Darlington transistor array and is mainly used as a relay driver with an ability to handle 8
relays at a time.
It comes with a collector-emitter voltage around 50 V and input voltage residing at 30 V.
- Before we move further, we must know what is Darlington transistor? It is commonly known as Darlington pair which is nothing but a combination of two bipolar transistors featuring a compound design and is connected back to back where current amplified by the first transistor is again amplified by the second one.
This shape delivers a much higher current gain as compared to each transistor taken separately. It works on the simple amplification principle happening in the regular transistor where a small base is used to make the pair switch for higher switching currents.
- This Darlington transistor mainly operates at 5V and is based on TTL (Transistor-Transistor Logic) and CMOS (Complementary Metal Oxide Semi-Conductor).
The
NPN transistors forming arrays are useful for both: interfacing between low logic level digital circuitry and achieving the higher current/voltage requirements in a wide range of applications including printer hammers, lamps, relays, consumer and industrial applications.
- The device shows open–collector outputs and freewheeling clamp diodes that turn out to be very handy for transient suppression.
ULN2803 Pinout
Following figure shows the pinout of ULN2803. It comes with 8 input pins and 8 output pins.
Pin Configuration
Pin number from 1 to 8 is a Channel 1 through 8 Darlington base input while pin number from 11 to 18 is Channel 1 through 8 Darlington base output. Similarly, 9 and 10 pins are ground and common cathode node (Vcc) respectively. It is important to note that common emitter is shared by all the channels.
Following table shows the pin configuration of ULN2803.
ULN2803 Logic Diagram
Following figure shows the logic diagram of ULN2803. It is a visual representation and arrangement of how the diodes are connected in the component.
Following figure shows the schematic diagram of each Darlington pair.
You can see how the
resistors and diodes are connected with each other. And the amplified output of one resistor is further amplified by the second resistor, giving a whopping amount of current gain which is difficult for the individual diode to achieve if incorporated separately.
ULN2803 Absolute Maximum Ratings
Following figure shows the absolute maximum rating of this component.
These are the stress ratings which if exceed from absolute maximum ratings, can damage the device at large, ultimately affecting the overall nature and performance of the project.
- Similarly, if these ratings are applied for the maximum period of time above normal operating conditions they can affect the reliability of the device.
Steps and measurements taken in the early stages of your project can save you from the atrocities of spending more in case the electronic circuit gets affected.
- It is preferred to check these ratings before placing the device in the circuit and make sure these ratings are quite in line and match exactly as defined by the manufacturer.
Applications
ULN2803 comes with a variety of advantages with a common application as a relay driver. Following are some major applications of this Darlington array.
- LED display
- Hammer Drivers
- Motor driver circuits like DC Motors or Stepper Motors
- IP Camera
- Lamp Drivers
- Stepper Motors
- Logic Buffers
- Line Drivers
- HVAC Valve and LED Dot Matrix
This is all for today. I hope you have found this read valuable. If you have any question, you can approach me in the comment section below. I'd love to help you the best way I can. Your feedback and suggestions are a valuable asset for us. Based on them, we develop our content strategy, so keep them coming. Thanks for reading the article.
Introduction to RS 232
Hello Friends! Hope you are doing well. I am back to give you a daily dose of valuable information. Today, I'll discuss the detailed
Introduction to RS 232 which is a standard communication protocol mainly used for serial communication between two devices. It was first introduced by the EIA (Electronic Industries Association) in 1960 to provide a pathway for connecting one device with other peripheral devices for flawless digital communication.
It is true, that the inception of USB has grossly reduced the need for RS232 protocol, still, we can't brush off its significant importance in some industrial applications where Programmable Logic Controllers and Computerized Numerical Control Equipment are specifically programmed using RS 232 connectors which is nothing but an interface between DTE (Data terminal equipment) and (Data communication equipment). Don't worry about these abbreviations, I'll come to them later.
In this post, I'll walk you through the basic concept of RS 232, why it is used and what are its main advantages and limitations. Let's dive in and explore the main features of the RS 232 protocol.
Introduction to RS232
RS 232, recently known as TIA 232, is a recommended standard protocol for serial data transmission between the electronic devices. It mainly works on three line signals: a transmission line, receive line and ground.
- The transmission line is mainly used to send the data serially from one end and receive line accepts the data from the other end while the common ground is used for devices.
Initially, it was very difficult to devise the clear protocol to send the data from one end to another. This led to the inception of the RS 232 protocol, revitalizing the communication industry with the main purpose to keep both ends of the connecting device under the same roof where they can accept, understand and communicate in the same language.
The RS 232 is mainly categorized into two systems: DTE and DCE.
DTE is a data terminal equipment such as a computer that handles the communication with some control functions and plays the main part of the station. Similarly, DCE is a data circuit-terminal equipment that is placed on the other end of the station and understands data being communicated from the DCE equipment.
The DCE system incorporates male DB connectors while the DCE system comes with female DB connectors.
- RS232 data is bi-polar in nature, indicating an "ON or 0-state (SPACE) condition" if a voltage is around 3 to 12 V and features an "OFF" or 1-state (MARK) condition if voltage ranges from -3 to -12 V.
It is important to note that, most of the companies have reshaped the internal structure of the recent computers where they still indicate an OFF state at the zero voltage level, all the while ignoring the negative voltage. Similarly, the "ON" state is not necessarily dependent on the highest voltage level and can be achieved with much less voltage around 5V.
Serial communication is mainly based on logical terms and RS232 transfers one bit at a time in the stream of ones and zeros which at the other end eventually get converted back to bits. There are eight bits in one byte.
- The duration at which the required signal stays in the particular state is dependent on the baud rate. The communication carried out in a RS 232 protocol is measured in baud - A number of bits transferred per second i.e. 1000 baud indicate 1000 bits per second.
There are other parameters that must be set up before the data transmission: Length of the byte, Parity and magnitude of stop bits.
This length of the signal can be reserved anywhere from 5 to 8 bits.
The second parameter is important. Partiy mainly comes with five options
Even parity indicates the last data bit transmitted will be a logical 1 if it contains an even number of 0 bits. Similarly, Odd parity will be showing that the transmitted data is termed as logical 1 if it comes with an odd number of 0 bits. And MARK and SPACE parity will be representing that the last transmitted data bit will be logical 1 and 0 respectively. The last parameter is a number of stop bits and its value is set as 1 or 2.
Transmission Capability
RS-232 can perform transmission at data rates up to 20 Kbps with distance range capability around 50 ft. It all depends on the capacitance of the cable. The low capacity cables can transfer data up to 1000 ft while cables with high capacitance can transfer data at the lower distance.
- As mentioned earlier many computers don't come with RS 232 port anymore, therefore we need to add USB-to RS 232 converter externally in order to make them compatible with RS 232 peripheral devices.
Although excessive use of RS 232 becomes obsolete, they are still used in low speed wired data connection and point-to-point networking equipment with short range capabilities.
Communication Process
The communication is simply based on the transmission and receive protocol and a total of 9 pins are involved in carrying out the complete transmission. The following figure shows how the data is transmitted over the terminal.
Mainly the communication is laid out between DTE and DCE terminals over the mutual agreement for required data transfer. The RTS pin shows the desire to send data to another terminal. As it turns ON, it indicates the DTE terminal is ready to transfer the data. The data will be transmitted gradually over the line without any resistance if CTS pin from the other is activated and grants permission to DTE for data transfer.
- The CD pin represents the current status of the RTS pin. If CD pin remains turned OFF, it will show the DTE terminal is not ready to send data over the channel. Similarly, turning it ON will be showing the DTW desires to send data and looking for permission from the other end.
Once the permission is granted, two other pins RD and TD come into play where former is used to receive data from DCE terminal and later is used for transferring data from DTE to DCE terminal.
- The DTR pin must be turned ON before both terminals are ready to communicate with each other. Actually, DTR (Data Terminal Ready) will be indicating that entire arrangement from both terminals is adequate and matches with the required protocol for data transfer. It serves as a go-ahead signal for the communication.
Connector Pinout
Following figure shows the configuration of DB 25 connector.
Following figure shows the pin configuration of the DB-9 connector.
- DB-9 and DB-25 connectors offer the outstanding quality and reliability for a number of serial and parallel (IEEE 1284) applications.
Types of Serial Communication
There are two main types of serial communication.
Half Duplex
Full Duplex
Half Duplex, as the name suggests, transfers the information in one direction only. It comes with two lines where one is a data line and other is signal ground. In this communication, the terminal is capable to send or receive data, but not at the same time. This method is an old one and is not under practice anymore.
Full Duplex communication can transmit and receive data in both directions, requiring three main lines: data transmit line, data receive line and signal ground.
Applications
Before USB came into play, RS-232 ports were the part and parcel for data communication between a computer and other peripheral devices. Still, they are successful in grooving their way in many science and technology applications. Let's have a look.
- In the absence of any network connection, RS232 ports are used to communicate in headless systems.
These ports play a vital role in establishing communication between the computer and embedded systems.
Some Programmable Logic Controllers cannot be programmed without RS232 protocol.
- Many Computerized Numerical Control Systems are equipped with RS232 port.
Apart from DB9 and DB25 ports, sometimes the two-wire interface is enough when the transmission of data is carried out in one direction only. Some GPS receiver and Digital Postal Scale work on this principle.
- Similarly, two more lines RTS and CTS are included in a 5-wire version as per the technical needs where two-way data transmission layered with hardware flow control is required.
That's all for today. I hope you have got valuable information out of this read. If you are unsure or have any question, you can approach me in the comment section below. I'll try and help you the best way I can. You are most welcome to keep us updated with your feedback and suggestions, they help us provide you quality work as per your needs and requirements Thanks for reading the article.
Sound Sensor Library for Proteus
Update: We have created a new version of this library, which you can check here:
Sound Detector Library for Proteus V2.0.
Hello friends, I hope you all are doing great. In today's tutorial, I am going to share a new Sound Sensor Library for Proteus. We are presenting this library for the first time and I would give the credit to our team, without their support it won't be possible. Proteus doesn't have this module in its library and it is used in a lot of Engineering Projects these days.
This sound sensor is used to detect the sound in the surroundings and is normally known as the Sound Detector sensor. It won't recognize the sound. As we can't produce the sound in Proteus, that's why we have placed a TestPin. When this TestPin is HIGH, that means we have sound in the surroundings and if it's LOW then there's silence. Analog sound detector sensors are also available but our sensor is a digital one. So, now let's have a look at How to download & simulate this Sound Sensor Library for Proteus:
Where To Buy? |
---|
No. | Components | Distributor | Link To Buy |
1 | Arduino Uno | Amazon | Buy Now |
Sound Sensor Library for Proteus
- First of all, download the Library files for the sound detector sensor by clicking the below button:
Sound Sensor Library for Proteus
- Open this downloaded zip file, and extract below three library files:
- SoundSensorLibraryTEP.LIB
- SoundSensorLibraryTEP.DLL
- SoundSensorLibraryTEP.HEX
- Place these three files in the Library folder of your Proteus software.
Note:
- Now restart your Proteus ISIS software and in the components section, make a search for sound sensor, as shown in the below figure:
- As you can see in the above figure, we now have 3 sound sensors in the Proteus database.
- So, now I am gonna place all of them in my Proteus workspace and here's how they look like:
- They are all similar in operation, I just changed the base color as there are different versions available.
- Now in order to make them work, we have to add the hex file.
- Double click the sensor to open its Properties panel and in the Program File section browse to SoundSensorLibraryTEP.HEX file.
- We have placed this hex file in the Library folder, here's the screenshot:
- Now click OK and our sound detector sensor is ready for simulation.
- So, let's design a simple circuit to test it out, as shown in the below figure:
- When the TestPin will get HIGH, that means we have sound in the surroundings. In that case OUT Pin will also go HIGH.
- In case of silence, OUT Pin will remain LOW.
- Let's run our simulation and test it out as shown in the below figure:
- So you can see in the above figure that LED is ON when the TestPin is HIGH and its OFF when the TestPin is LOW.
- So that's how you can detect sound in Proteus.
- I have also created this video which will give you a better understanding of How to download and use this Sound Sensor Proteus Library.
I hope you will like this Proteus Library. If you have any suggestions regarding this Proteus Library then ask in the comments and we will try our best to resolve them. Thanks for reading. :)
Introduction to CD4047
Hi Guys! Hope you are doing well. In this platform, we always strive to keep updated with valuable information related to engineering and technology. Today, I'll discuss the detailed
Introduction to CD4047. It is a CMOS Low Power monostable/astable multivibrator mainly used for converting DC current signal to AC signal.
This inverter proves to be very handy in some countries where load-shedding creates a significant problem as it comes with an ability to store electrical energy and discharge it in the absence of main electrical power.
In this tutorial, I'll cover the entire details on this inverter, its main features, working, and applications. Let's dive in and explore everything you need to know about this inverter.
Introduction to CD4047
CD4047 is a CMOS Low Power monostable/astable multivibrator mainly used for converting DC current signal to AC signal. It comes with a high voltage rating around 20-V.
- CD4047 is a 14 pin IC that operates on a logic techniques with an ability to allow negative or positive edge-triggered monostable multivibrator action layered with retriggering and external counting options.
Accurate and complemented buffered output with low power consumption make this IC an ideal choice for Frequency Division and Time Delay applications.
The internal power-on reset circuit is added on the IC and fast recovery time makes it an independent from the pulse width.
- There is a sheer difference involved when IC works in monostable and astable mode. In monostable mode, the inverter needs a trigger signal for generating the output pulse, but an astable multivibrator doesn't require trigger signal for every output pulse. More often than not, an astable multivibrator can be called as an oscillator.
CD4047 Features
No matter what type of operation this IC undergoes, an external resistor is permanently connected between RC-Common and R timing terminals and an external capacitor is connected between RC-Common and C timing terminals. The following figure shows the main features of this IC.
Features |
Low Power Consumption
Noise Resistance
Generate both Monostable and Astable operation
Symmetrical buffered output characteristics
One resistor and one capacitor is used externally |
Monostable Features |
Output pulse width doesn't dependent on trigger pulse duration
Pulse width expansion with retrigger option
The positive and negative edge trigger option is available |
Astable Features |
Creates 50% duty cycle
Free running operating modes
Oscillator output
Impressive frequency stability |
CD4047 Pinout
Following figure shows the pinout diagram of CD4047.
- There are 14 pins available on the IC where Vss is a ground pin and Vdd is a voltage supply pin. There are six inputs including trigger', trigger, astable, astable', external reset and retrigger. While buffer outputs include three outputs mentioned as Q, Q', and Oscillator.
Both astable and astable' take part for triggering the operation by keeping high level on the former and low level on the later.
- The IC behaves as a gatable multivibrator if complement pulses on the astable' and true pulses are applied on the astable pins.
The CD4047 will be only triggering in a monostable state when a positive edge appears on the +trigger with -trigger keeping low.
CD4047 Pin Description
As mentioned earlier there are 14 pins on the IC interface with every pin is used with a specific purpose. Folloiwng table shows the pin description of each pin.
Pin# |
Pin Name |
Pin Description |
1 |
C |
Connected to an external capacitor |
2 |
R |
Connected to an external resistor |
3 |
R-C Common |
Common pin for establishing a connection with resistor and capacitor |
4 |
Astable' |
Must be kept low when used in astable mode |
5 |
Astable |
Must be kept high when used in astable mode |
6 |
-Trigger |
High to Low transition will be given to this pin when used in Monostable mode |
7 |
Vss |
Ground Pin |
8 |
+Trigger |
Low to high transition will be given to this pin when used in Monostable mode |
9 |
EXT Reset |
External reset triggers when a high pulse is provided to this pin, resetting the output Q to low and Q’ to high |
10 |
Q |
Generates high output |
11 |
Q' |
It is an inverse output of pin 10, producing a low output |
12 |
Retrigger |
This pin is used in Monostable mode for simultaneously retriggering +trigger and –trigger pin |
13 |
Osc Out |
Generate oscillated output |
14 |
Vdd |
Voltage supply pin |
CD4047 Working in Monostable and Astable Mode
CD4047 is a low power inverter that comes with an ability to operate in both states: astable or monostable mode. In astable mode, it operates by charging a capacitor using a valuable resistor that is mainly used to adjust the output frequency near 50Hz.
Monostable Mode
In Monostable Mode, an external resistor must be connected between Pin 1 & 3 of the IC that helps in determining the output pulse width. We will be using +trigger and –trigger Pin in this mode.
Both pins will generate the Monostable output when we provide High to Low transition at –trigger Pin and Low to High transition at +trigger Pin.
The following formula is used to determine the frequency at Pin 10 & 11
f = 1 / 8.8 x R*C
Astable mode
As mentioned earlier in astable mode, the inverter needs a trigger signal for generating the output pulse. The output frequency is determined when a single capacitor is connected between PIN 2 and 3.
The IC will be operating is an Astable mode when we apply HIGH on Pin 5 and LOW on Pin 4, generating the output toggling between HIGH and LOW.
The oscillated output frequency on Pin 13 can be determined using the following formula
F = 1 / 4.4 x R*C
Similarly, the formula to find the time it takes to generate pulse will be given as:
t = 2.48 x R*C
Applications
This inverter comes with a wide range of applications that are mainly related to DC to AC conversion. Following are the main applications it can be used for.
- Frequency division
- Frequency multiplication
- Timing delay applications
- Timing circuits
- Frequency discriminators
That’s all for today. I hope this article has helped you got a complete overview of CD4047 and the main functions associated with it. If you are unsure or have any question, you can ask me in the comment section below. I’d love to assist you in any way I can. Feel free to give your feedback and suggestions that help us provide you quality work based on your needs and requirements. Thanks for reading the article.
Introduction to HC-SR04 (Ultrasonic Sensor)
Hi Friends! I hope you are doing well. Welcome you onboard. Today, I'll discuss the basic
Introduction to HC-SR04 Ultrasonic Sensor. It is an ultrasonic sensor, also known as an ultrasonic transducer that is based on a transmitter and receiver and mainly used to determine the distance from the target object.
The amount of time it takes to send and receive waves will determine how far the object is placed from the sensor. It mainly depends on the sound waves working on “non-contact” technology. The required distance of the target object is measured without any damage, giving you accurate and precise details.
This sensor comes with a range between 2cm to 400cm and is used in a wide range of applications including speed and direction measurement, wireless charging, humidifiers, medical ultrasonography, sonar, burglar alarms, and non-destructive testing.
In this post, I'll try to cover basic details related to HC-SR04, so you get an idea what is this about and how it can be used in the major applications as per your needs and requirements. Let's jump right in and get down to the details on this ultrasonic sensor.
Introduction to HC-SR04 ( Ultrasonic Sensor )
- HC-SR04 is an ultrasonic sensor mainly used to determine the distance of the target object.
- It measures accurate distance using a non-contact technology - A technology that involves no physical contact between sensor and object.
- Transmitter and receiver are two main parts of the sensor where former converts an electrical signal to ultrasonic waves while later converts that ultrasonic signals back to electrical signals.
- You can download HCSR04 Datasheet by clicking below button:
Download HC-SR04 Datasheet
- These ultrasonic waves are nothing but sound signals that can be measured and displayed at the receiving end.
- Following table shows the main features of this ultrasonic sensor.
Parameter |
Value |
Main Parts |
Transmitter & Receiver |
Technology Used |
Non-Contact Technology |
Operating Voltage |
5 V |
Operating Frequency |
4 MHz |
Detection Range |
2cm to 400cm |
Measuring Angle |
30º |
Resolution |
3mm |
Operating Current |
<15mA |
Sensor Dimensions |
45mm x 20mm x 15mm |
- It gives precise measurement details and comes with accuracy (resolution) around 3mm, terming there might be a slight difference in the calculated distance from the object and the actual distance.
HC-SR04 Pinout & Description
- HC-SR04 contain 4 pins in total.
- Following table shows the HC-SR04 Pinout & Description:
No. |
Pin Name |
Pin Description |
1 |
VCC |
The power supply pin of the sensor that mainly operates at 5V DC. |
2 |
Trig Pin |
It plays a vital role to initialize measurement for sending ultrasonic waves. It should be kept high for 10us for triggering the measurement. |
3 |
Echo Pin
|
This pin remains high for short period based on the time taken by the ultrasonic waves to bounce back to the receiving end. |
4 |
Ground |
This pin is connected to ground. |
- I have labelled these HC-SR04 Pinout in below figure for better visualization:
How does it work?
The
HC-SR04 Ultrasonic (US) sensor is an ultrasonic transducer that comes with 4 pin interface named as Vcc, Trigger, Echo, and Ground. It is very useful for accurate distance measurement of the target object and mainly works on the sound waves.
As we connect the module to 5V and initialize the input pin, it starts transmitting the sound waves which then travel through the air and hit the required object. These waves hit and bounce back from the object and then collected by the receiver of the module.
Distance is directly proportional to the time these waves require to come back at the receiving end. The more the time taken, more the distance will be.
The waves will be generating if the Trig pin is kept High for 10 µs. These waves will travel at the speed of sound, creating 8 cycle sonic burst that will be collected in the Echo pin.
The echo pin remains turned on for the time these waves take to travel and bounce back to the receiving end. This sensor is mainly incorporated with Arduino to measure the required distance.
Following formula is used to calculate the distance of the object.
S = (V x t)/2
Where S is the required distance, V is the speed of sound and t is the time sound waves take to come back after hitting the object. We need to divide the value by 2 because time will be double as the waves travel and bounce back from the initial point. Dividing it by 2 will give the actual distance of the target object.
Using HC-SR04 with Arduino Module
In order to get the precise distance measurement, HC-SR04 is mostly used in combination with different Arduino Modules like
Arduino Uno and
Arduino Mega. You can connect Arduino with this sensor in the following way.
- First, you need to power up the sensor using 5V DC regulated input to the sensor. Connect the ground pin with the ground of the voltage source. You can also power the sensor module using the Arduino 5V pins as the current drawn by the sensor is less than 15mA, won't be affecting the current ratings of the Arduino Module.
After setting up the initial arrangement, connect both Trig and Echo pins to the I/O pins of the Arduino Board. As mentioned earlier, in order to initialize the measurement process, the Trig pin must be kept high for 10us in the start. The sensor module will start generating sound waves with the frequency around 40,000 Hz per second from the transmitter.
- As the waves bounce back, consequently, the Echo pin will turn on until the sounds waves are received by the receiver. This time will be calculated using Arduino Module.
This tutorial that will help you
How to Interface Ultrasonic Sensor with Arduino Module
You can also
Interface Multiple Ultrasonic Sensors with Arduino Module
Applications
HC-SR04 comes with a wide range of applications mainly targeting distance and direction measurements. Following are the major applications it can be used for.
- Speed and direction measurement
- Wireless charging
- Humidifiers
- Medical ultrasonography
- Burglar alarms
- Embedded system
- Depth measurement
- Non-destructive testing
That's all for today. I hope I have given you everything you needed to know about this sensor. If you are unsure or have any question, you can approach me in the comment section below. I'd love to help you the best way I can. Feel free to keep us updated with your valuable feedback and suggestion, they help us stay above the curve and give you quality content as per your demands. Thanks for reading the article.
Introduction to LED (Light Emitting Diode)
Hi Friends! Hope you are doing well. I always feel pleasure to keep you updated with information related to engineering and technology. Today, I'll unlock the detailed Introduction to LED. The LED stands for Light-emitting diode. LED is a PN-junction diode mainly used as the source of light.
The LED has a leg over common orthodox incandescent light in terms of efficiency, low consumption power, compact size, longer range and an ability to retain the quality for a longer period of time. It comes with a wide variety of applications ranging from automotive headlamps, camera flashes, aviation lighting, traffic signal, and medical devices.
In this post, I'll try to cover each and everything related to LED, so you don't need to wrestle your mind browsing the whole internet and find all the information in one place. Let's dive in and get down to the detail of this little semiconductor component.
Introduction to LED (Light Emitting Diode)
LED is a PN-junction diode that is mainly used as a replacement for incandescent lights. It is based on the electroluminescence effect - A process where a diode converts electric current to light when electrons change their state inside the LED semiconductors.
The PN-junction is nothing but a combination of both N-type and P-type semiconductor materials. The material forming the junction diode is not identical to other mainstream didoes, as it comes with a transparent package, allowing the infrared and visible light to pass through the junction.
- The LED contains two terminals known as anode and cathode. The former contains a positive charge on it and comes with the longer lead as compared to others, and later contains a negative charge on it.
LED will be working under one condition: the anode terminal should be put at a higher potential than the cathode terminal as current flows from anode to cathode (positive to negative). LED won't conduct if the respective terminals are connected in reverse order.
- LEDs, also known as infrared-emitting diodes, are very helpful in a wide range of applications. The experts were always in a need of creating an alternative to regular bulbs that turned out to be expensive and less efficient. The first experiment on electroluminescence was conducted in 1907, followed by a number of experiments later on that resulted in the development of visible light.
The brightness of every LED depends on the current drawn by it - the most the current drawn the more brightness will be.
There is a threshold set for the current every LED can withstand, increasing it from the rated value will burn the LED.
In the start, LEDs came with Infrared low-intensity light that grooved their way in the remote control applications, mainly targeting consumer electronics. In that time, the Red light was mainly used in the LED, however, in 2002 the experts succeeded in adding the White light to the LED semiconductor.
- The LED underwent through a number of tests and experiments and evolved over the years, however, recent LEDs come with different wavelengths ranging from ultraviolet, visible, to infrared wavelengths, producing light with high brightness.
The efficiency by which the LED converts electricity into the light is remarkable which makes it an ideal choice in the computer chip technology, adding an extra layer of both efficiency and robustness.
Note: The LED is not symmetrical in nature, allowing current to flow in one direction only.
LED Working Principle
LED is mainly comprised of four parts known as die, substrate, phosphor, and lens. The die is a semiconductor material containing gallium nitride (GaN) that emits blue light when the electric current passes through it. In order to provide easy integration of LED, one or two dies are used in combination with the substrate, generating enough power to light up the LED.
- White light is mainly preferred over blue one in general lighting applications where the desired color is produced using phosphor.
The blue light, emitting from the die, will generate white light once it hits phosphor particles.
- It is important to note that the phosphor can be applied to die material both ways: directly or layered with the lens material that either extracts or directs the light and mainly comes with silicon or glass.
The LED, more often than not, generates monochromatic light ranging from red to blue and violet.
- Traditional LEDs are formed using inorganic semiconductor materials including aluminum, gallium, silicon, indium, and zinc that produce a different color based on the type of material used: aluminum gallium phosphide produces green color, while aluminum gallium nitride and aluminum gallium arsenide produce ultraviolet and red light respectively.
The LEDs are also rated with respect to the voltage required to turn them on where red LEDs come with a maximum voltage rating of around 2.2V, while blue LEDs and white LEDs come with a voltage rating of 3.4V and 3.6V respectively.
Temperature Limitations
The LED never fails to satisfy the power consumption needs of a regular user, however, the use of this tiny component in a high temperature and pressure environment can make it highly vulnerable. Taking this point into consideration, some LEDs incorporate a heat sink on their interface, which prevents them from overheating and makes them an appropriate pick in conditions where high temperature is a major concern.
- A very high temperature can make the heat sink stopped working and put your LED in a total stall. Before you aim to use LED for your relevant project, make sure the temperature ratings match and resonate with the LED you are using.
Types of LEDs
LEDs are available in a variety of types. Some are preferred over others based on the nature of their applications. Following are some main types of LEDs.
High Power LEDs
LEDs are known as High Power LEDs if their power rating is greater than or equal to 1 Watt. They are mainly used for generating the maximum brightness. The input power required for these LEDs is very high, making them prone to heat dissipation.
Heat sinks are required to keep these LEDs cool and impede them from burning. Flashlights, spotlights, and automobile headlamps are some major applications of High Power LEDs.
RGB LEDs
It is widely used in many computer applications and comes with the ability to generate three lights, as the name suggests, red, blue and green. The color of these lights is controlled by using PWM (pulse width modulation). Both the duty cycle of PWM and the frequency used for generating the signal per second, prove to be handy for controlling all three colors.
SMD LED
SMD LED stands for Surface Mount Device LED. It comes in a special package with the ability to be mounted on the PCB surface. It can be easily categorized based on the physical dimensions. It works both ways: separately or in combination with a compatible device.
Thru-Hole LED
Thru-hole LED comes with two terminals leads that are embedded into the holes of the printed circuit board. They are available in a variety of different packages and shapes. Most common colors they come with are white, red, blue and green.
Why LED?
It is arguably correct, LED consumes 75% less power than normal incandescent without failing to produce the brightness with equal intensity.
Yes, buying it may make your budget bleed in the start as it features more costly as compared to regular halogen light, but it proves to be economical in the long run due to its high quality, longer life span and less power consumption.
LED Applications
The compact size of the LED makes it stand to fit in hard-to-reach places including ceiling lighting, cove lighting, tray, and cabinet lighting.
- Thanks to the robust nature of LEDs - without them, Landscape lighting would never be so easy and created flawlessly as it has been right now. The LEDs play a vital role in generating and optimizing the light beam angle at the desired distance and their ability to disguise any shape as per the nature of the environment they are incorporating in, helps them serve a real purpose, adding curated light layered with beauty using a single source.
Some of the digital clocks are developed using the LED interface. And the 7-segment LED display is a widely used student project that incorporates the array of LEDs in an organized manner.
- They are profoundly used in automotive industries, LCD panels, fiber optics data transmission, and remote control devices. While pointing out the sheer advantages of LEDs, we can't write off their value in advertising. They are mainly used to captivate the visitors - when placed in the advertising banner and tree decorated with a number of infrared lights will help in getting the instant attention of the customers.
That’s all for today. I have given you everything you needed to know about LED. If you are unsure or have any questions, you can ask me in the comment section below. I’d love to help you the best way I can. You are most welcome to share your valuable feedback and suggestion, they help us provide you with quality work as per your needs and requirements so you keep coming back for what we have to offer. Thanks for reading the article.
Introduction to CR2032
Hey Guys! Hope you are doing well. Welcome you onboard. Today, I'll discuss the details on the
Introduction to CR2032 Battery. It is known as a coin cell or button cell that comes in cylindrical form and is mainly used in pocket calculators, wrist watches, artificial cardiac pacemakers, hearing aids, and automobile key-less entry transmitters.
Low self-discharge and an ability to retain a charge for a long time make this device a good pick for high power devices. More often than not, it is called a lithium energizer where high capacity is a major concern. It falls under the category of disposable primary cells, where common cathode material is a silver oxide, manganese dioxide, or carbon monofluoride and common anode materials are zinc or lithium.
In this post, I'll try to cover each and everything related to CR2032, so you don't need to wrestle your mind browsing a whole internet and find all information in one place. Let's jump right in and get down to the major details on this tiny device.
Introduction to CR2032
- CR2032 is a coin cell battery, also known as lithium energizer, that is mainly used in high power devices such as hearing aids, glucose monitors and automobile keyless entry transmitters.
- It provides a long service life to the devices it is incorporated in, allowing them to cover it by making a solid cylindrical shape. It can withstand high temperatures ranging from -22 to 140 F and can hold a bunch of power, enough to retain the charge for almost full 8 years.
- High capacity makes it a good replacement for BR2032, 5004LC, DL2032, and ECR2032.
- It is advised to keep this device away from the hunting eyes of kids, as swallowing it may cause serious injury or death in some cases due to chemical burns.
- Battery compartments are mainly used to keep the device safe and away from the children. These compartments can be shaped using two methods: an external mechanical tool like a screwdriver or coin is needed to unlock the battery compartment or using spare hand by applying two independent movements of the securing mechanism. They are designed in a way that can house a variety of cells where capacities will vary by size.
- The point worth mentioning here is that these Coin Lithium Cells are not interchangeable, however, thickness and diameter can be modified based on the cell designation.
CR2032 Features
Following are the main features of CR2032.
Classification |
Coin Cell Battery or Lithium Energizer |
Product Name |
CR2032 |
Output Voltage |
3V |
Chemical System |
Lithium / Manganese Dioxide (Li/MnO2) |
Capacity |
235 mAh |
Energy Density |
198 milliwatt hr/g |
Weight |
3 gram |
Lithium Content |
0.109 grams |
Self Discharge |
1% / year |
Type |
Non-Rechargeable |
Maximum Operating Temperature |
70 °C |
Minimum Operating Temperature |
-30 °C |
- Some cells made from different chemical compositions are mechanically interchangeable that can directly relate to the voltage stability and service cell life.
- Be careful while selecting the coin cell for a relevant device, wrong selection can severely affect the device performance, resulting in short life or hindrance in the operating process.
CR2032 Dimensions
The following figure shows the dimensions of CR2032.
- The dimensions are given in mm vs inches.
- These dimensions are specific to the CR2032 battery, however, these Coin Cells come in a variety of dimensions and are used as per technical needs and requirements.
CR2032 Applications
CR2032 are used in a wide range of applications and can easily adjust in the hard to reach places due to its smaller size. Following are the major applications of CR2032.
- Wrist-watches
- Toys and games
- Pocket calculators
- Heart-rate monitors
- Artificial cardiac pacemakers
- Glucose monitors
- Implantable cardiac defibrillators
- Hearing aids
- Keyless entry transmitters
That's all for today. I hope I have given you everything you needed to known about CR2032 battery. If you are unsure or have any question, you can comment me in the section below. I'll try and help you according to the best of my knowledge. You are most welcome to feed us with your valuable feedback and suggestions, they keep you in a constant loop and help us provide you quality work as per your demands. Thanks for reading the article.
Introduction to IRF3205
Hi Fellas! I am back to give you a daily dose of valuable information. Today, I'll give you a detailed
Introduction to IRF3205. It is an N-Channel HEXFET Power
MOSFET that comes in a TO-220AB package and operates on 55V and 110A. It is mainly used for dynamic dv/dt rating and consumer full bridge applications.
Additionally, it falls under the category of ultra LOW on-resistance devices based on Advanced Process Technology, making it a building block of the electronic applications where fast switching is a major concern.
In this post, I'll cover each and everything related to this transistor, its main features, working, pinout, and applications. Let's get down to the nitty-gritty of this tiny component.
Introduction to IRF3205
- IRF3205 is an N-Channel HEXFET Power MOSFET that is mainly based on Advanced Process Technology and used for fast switching purpose.
- International Rectifier has introduced this device with the aim to generate extremely low on-resistance per silicon area.
- This power MOSFET is known as the voltage controlled device that mainly contains three terminals called:
- The voltage at Gate Terminal is used to handle the conductivity on other two terminals.
- The low thermal resistance and operating temperature around 175°C make this device an ideal choice for commercial industrial applications, providing power dissipation of around 50 watts.
- This Power MOSFET differs from the normal MOSFET, where former comes with gate layered with thick oxide and can experience high input voltage while the later comes with thin gate oxide without the ability to withstand high voltage i.e. applying high voltage will drastically affect the overall performance of the device.
- It features benchmark high package current ratings - appropriate for high power DC motors, power tools, and industrial applications.
IRF3205 Pinout
- IRF3205 Pinout consists of 3 Pins in total.
- All these pins, along with their name & type are shown in below table:
IRF3205 Pinout |
Pin# |
Name |
Symbol |
Type |
Function |
1 |
Gate |
G |
P-Type |
Controls the current between Drain & Source |
2 |
Drain |
D |
N-Type |
Electrons Emitter |
3 |
Source |
S |
N-Type |
Electrons Collector |
- Movement of electrons plays an important role in the current flowing from drain to source terminal.
- The output current is highly dependent on the voltage applied to the gate terminal.
Working
- The gate, source and drain in this MOSFET are analogous to the base, collector, and emitter in the BJT (Bipolar Junction Transistors)
- The source and drain are made up of n-type material while component body and the substrate is made up of p-type material.
- Adding silicon dioxide on the substrate layer gives this device a metal oxide semiconductor construction.
- It is a unipolar device where conduction is carried out by the movement of electrons.
- An insulating layer is inserted in the device that makes gate terminals separated from the entire body. The region between drain and source is called N-channel that is controlled by the voltage present at the gate terminal.
- MOSFET stays ahead of the curve when they are compared to BJT as the former needs no input current to control a large amount of current on remaining two terminals.
- Applying a positive voltage at this MOS structure will change the charge distribution in the semiconductor where holes present under the oxide layer deal with the force, allowing the holes to move downward.
- It is important to note that, the bound negative charges are connected with acceptors atoms that are mainly responsible for flocking the depletion region.
- The electrons, if applied with abundance, will help in increasing the overall channel conductivity, changing the substrate into the N-type material.
IRF3205 Proteus Simulation
- As I have told you earlier, IRF3205 is an N-channel Mosfet used for fast switching, that's why it's an ideal selection for designing H-Bridge.
- I have designed this Proteus Simulation where I have converted DC voltage into AC and if you look at it closely then I have used IRF3205 MOSFET in the H-Bridge:
- Moreover, I have used IRF5210 for the counter P-Type Mostel in H-Bridge.
- If you run your simulation then you will get AC sine wave in your oscilloscope, as shown in below figure:
- You can download this simulation by clicking the below button:
Download Proteus Simulation
IRF3205 Features
- Dynamic dv/dt Rating
- N Channel power MOSFET
- 55V, 110A
- TO-220
- 175°C Operating Temperature
- Fully Avalanche Rated
- Ultra Low On-Resistance
- Advanced Process Technology
- Fast Switching
IFR3205 Absolute Maximum Ratings
Following figures shows the absolute maximum ratings of IRF3205.
- These are the stress ratings that are important for the execution of the electronic circuit. If these stress ratings are exceeded from absolute maximum ratings, they can affect the overall nature and performance of the project, resulting in keeping your project in a total stall.
- Similarly, if these ratings are applied for the maximum period of time above normal operating conditions they can affect the reliability of the device.
- It is preferred to get a hold of these ratings before placing the device in the circuit, making sure if it undergoes the same operating conditions and stress ratings as provided by the manufacturer.
Applications
- Fast switching applications
- Consumer Full-Bridge
- Industrical and Commercial applications
- Full-Bridge
- Push-Pull
That's all for today. I hope I have given you everything you needed to know about IRF3205. If you are unsure or have any question, you can ask me in the comment section below. I'd love to help you in any way I can. Feel free to keep us updated with your valuable feedback and suggestions - they help us provide you quality work as per your needs and requirements. Thanks for reading the article.
Introduction to IRF4905
Hey Guys! Welcome you onboard. Today, I'll discuss the details on the
Introduction to IRF4905. It is a P-Channel HEXFET Power
MOSFET available in a TO-220AB package and is based on Advanced Process Technology. It is mainly used for fast switching purpose, capable of providing ultra-low on-resistance.
This tiny device comes with three terminals called gate, drain and source where the gate terminal is used to control the current on remaining two terminals. The area between source and drain is known as a channel that is widely dependent on the voltage applied to the gate terminal.
In this post, I'll cover each and everything related to this P channel MOSFET, its main features, working, pinout and applications. Let's jump right in and explore everything you need to know.
Introduction to IRF4905
- IRF4905 is a P-Channel HEXFET Power MOSFET available in a TO-220AB package and is based on Advanced Process Technology.
- It comes with three main terminals called drain, gate and source that are analogous to the emitter, base, and collector in the BJT (Bipolar Junction Transistors)
- It is a unipolar device where only one charge carriers i.e. holes are responsible for the current conduction.
- There are two types of MOSFET available for the development of electronic projects i.e. P channel and N channel both make use of single charge carriers where former contain holes as the major charge carriers and later contain electrons as the major charge carriers.
- This device falls under the category of Power MOSFET, different from normal MOSFET, where former contains thick gate oxide that can withstand high input voltage while the later comes with thin gate oxide, making it unable to bear high input voltage.
Working of IRF4905
- In this MOSFET transistor, gate plays a vital role to handle the conductivity in the channel between drain and source. As it is a P-Channel - holes will be responsible for the current conduction.
- In this components, the body and substrate are composed of N-type material while the drain and source are composed of P-type material - Laying out an exact oppositive composition as compared to N-Channel MOSFET.
- Following figure shows the internal construction of IRF4905.
- Applying negative voltage at the gate terminal will move the oxide layer downward in the substrate layer with a strong repulsive force, allowing positive holes to be accumulated around the gate region.
- The negative voltage applied at the gate terminal attracts the holes, helping to produce the p-type conducting channel using n-type substrate material.
IRF4905 Pinout
Following figure shows the pinout of IRF4905.
IRF 4905 Features
- Dynamic dv/dt rating
- Advance Process Technology
- P-Channel
- Fast Switching
- 175 C operating temperature
- Fully Avalanche Rated
- Ultra Low On Resistance
IRF4905 Absolute Maximum Ratings
Following figure shows the absolute maximum ratings of this P-Channel MOSFET.
- These are the stress ratings of this transistor which play a vital role in the execution of the electronic circuit. If these stress ratings are exceeded from absolute maximum ratings, they can affect the overall performance of the project.
- Also, if these ratings are applied for the maximum period of time above normal operating conditions, they can drastically affect the reliability of the device.
- It is advised to check these ratings before placing the device in the circuit in order to avoid any hassle in the future.
Applications
- Commercial and Industrial Applications
- Fast Switching
- Amplification Purpose
That's all for today. I hope you have found this article useful. If you are feeling skeptical or have any question, you can ask me in the comment section below. I'd love to guide you according to the best of my expertise. You are most welcome to feed us with your valuable suggestions - they help us provide you quality work as per your needs and requirements. Thanks for reading the article.
ESP8266 Pinout, Datasheet, Features & Applications
Hello friends! Hope you are doing well. Today, we will have a look at the detailed
Introduction to ESP8266 WiFi module. ESP8266 is a very low-cost & user-friendly WiFi module, which develops a simple TCP/IP connection and can easily be interfaced with microcontrollers via Serial Port. The first chip in this series was ESP-01 which gained sheer attention in the market.
In this tutorial, we will discuss the ESP8266 WiFi module along with its pinout, features, specifications, applications and datasheet. Let's dive in and nail down everything related to this device.
ESP8266 WiFi Module
- ESP8266 (also called ESP8266 Wireless Transceiver) is a cost-effective, easy-to-operate, compact-sized & low-powered WiFi module, designed by Espressif Systems, that supports both TCP/IP and Serial Protocol.
- It's normally used in IOT cloud-based embedded projects and is considered the most widely used WiFi module because of its low cost and small size.
- It runs at an operating voltage of 3V and can handle a maximum voltage of around 3.6 V, so an external logic level converter is required if you are using 5V supply.
- ESP8266 WiFi module can easily be interfaced with microcontrollers board (i.e. Arduino UNO) via Serial Port.
- There are numerous breakout boards available based on ESP8266 WiFi Module (i.e. ESP8266 NodeMCU V3).
- Beause of its compact size, its mostly used in autonomous projects (i.e. Robotics).
- Other than ESP8266, "Espressif Systems" has designed many other ESP WiFi modules, few of them are shown in below figure:
Now let's have a look at the ESP8266 Pinout, necessary for interfacing with microcontrollers.
ESP8266 Pinout
- ESP8266 Pinout consists of 8 pins in total, which are given in below table along with their operation:
ESP8266 Pinout
|
No. |
Pin Name |
Working |
1 |
RX |
Serial Receiver Pin |
2 |
Vcc |
Power Pin (+3.3 V; can handle up to 3.6 V) |
3 |
GPIO 0 |
General-purpose I/O No. 0 |
4 |
RST |
Reset |
5 |
CH_PD |
Chip power-down |
6 |
GPIO 2 |
General-purpose I/O No. 2 |
7 |
TX |
Serial Transmitter Pin |
8 |
GND |
Ground |
- Each pin comes with a specific function associated with it where Vcc and GND are voltage source and ground respectively.
- RX and TX are used for communication where TX is dedicated for data transmission and RX is used receiving data.
ESP8266 Datasheet
- You can download ESP8266 Datasheet by clicking the below button:
Download ESP8266 Datasheet
ESP8266 Features
- It is also known as a system-on-chip (SoC) and comes with a 32-bit Tensilica microcontroller, antenna switches, RF balun, power amplifier, standard digital peripheral interfaces, low noise receive amplifier, power management module and filter capability.
- The processor is based on Tensilica Xtensa Diamond Standard 106Micro and runs at 80 MHz.
- It incorporates 64 KiB boot ROM, 80 KiB user data RAM and 32 KiB instruction RAM.
- It supports Wi-Fi 802.11 b/g/n around 2.4 GHz and other features including 16 GPIO, Inter-Integrated Circuit (I²C), Serial Peripheral Interface (SPI), 10-bit ADC, and I²S interfaces with DMA.
- External QSPI flash memory is accessed through SPI and supports up to 16 MiB and 512 KiB to 4 MiB is initially included in the module.
- It is a major development in terms of wireless communication with little circuitry. and contains onboard regulator that helps in providing 3.3V consistent power to the board.
- It supports APSD which makes it an ideal choice for VoIP applications and Bluetooth interfaces.
How to Power Up the Module
- You can power up the device with PC port using USB to Serial adaptor. The 2 AA and LIPO batteries are equally handy for powering up the device.
- It is advised to not power this device directly with 5V dev board. Doing so can severely affect the quality and overall performance of the device.
ESP8266 NodeMCU
- There are numerous breakout boards designed by different companies, based on this ESP8266 WiFi module.
- Among these breakout boards, ESP8266 NodeMCU is the most popular one.
- Here's the Pinout Diagram of ESP8266 NodeMCU:
ESP8266 Projects & Applications
ESP8266 WiFi module is widely used in embedded projects and thus brings WiFi capability. Here's few ESP8266 Projects & Applications:
- Wireless Web Server
- Geolocation using ESP8266
- Pressure Sensors on Railway Tracks
- Air Pollution Meter
- Temperature logging system
- World’s smallest IoT project
- Wi-Fi controlled robot
- Humidity and temperature monitoring
- M2M using ESP8266
That's all for today. I hope I have given you everything you needed to know regarding this WiFi module. If you are unsure or have any question, you can ask me in the comment section below. I'd love to help you in any way I can. You are most welcome to keep us updated with your suggestions so we keep providing quality work that resonates with your needs and demands. Thanks for reading the article.