Update: Here are the latest versions of this library: Arduino Library for Proteus(V3.0) and Arduino UNO Library for Proteus(V2.0).
]Hello friends, hope you all are fine. In today's post, I am going to share the Arduino UNO Library for Proteus. I designed this library by myself in Proteus, it was quite difficult and literally, it took me weeks to figure out How to add functionality of a new component in Proteus. First, I used Proteus VSM but it was quite difficult so I left it and finally, I used Microsoft Visual Studio C++ Language to design this Arduino library for Proteus.
I am not going to discuss How I designed this library because it's quite a lengthy process and I will discuss it some other time. Today, I will provide the Arduino UNO library for Proteus to download, so that you can use it easily in Proteus and can simulate your circuits easily. I am really excited about it as it's my first Proteus library and I am going to design more in the near future. Till now I have just designed an Arduino UNO board in Proteus. Soon, I will share libraries for other Arduino boards as well.
In today's post, I will first share the Arduino UNO library for Proteus and will explain how to use it. After that, we will also have a look at a simple blinking example so that you get a complete overview of this Arduino UNO library for Proteus. So, let's get started with it.
I have added all the Arduino boards in a single library. This library contains six Arduino boards which are Arduino UNO, Arduino Mega 2560, Arduino Mega 1280, Arduino Nano, Arduino Mini and Arduino Pro Mini. You can download this complete Arduino Library by checking Arduino Library for Proteus.
So, that's all for today, feel free to let us know about your experience with our Arduino UNO library for Proteus. If you have any suggestions and comments then do let us know so that we can enhance its capabilities. I will keep on updating this library for example, I haven't yet added the PCB deign in this board but will add it soon and will update it. So, stay tuned and have fun !!! :)
Actually we have already understood the working of both keypad and LCD so I thought to share this small project as it will give you the practical application of both keypad and LCD. And if you are new to 8051 Microcontroller then its always better to first design a small project and then move to pro one. The Simulation file along with hex file and complete code is given at the end for download. But my suggestion is to design it by yourself as it will help you in learning. You will do mistakes but obviously it will help you in learning so make mistakes and learn with it. So, let's get started with it.
while(1)
{
//get numb1
key = get_key();
writecmd(0x01); //clear display
writedata(key); //Echo the key pressed to LCD
num1 = get_num(key); //Get int number from char value, it checks for wrong input as well
if(num1!=Error) //if correct input then proceed, num1==Error means wrong input
{
//get function
key = get_key();
writedata(key); //Echo the key pressed to LCD
func = get_func(key); //it checks for wrong func
if(func!='e') //if correct input then proceed, func=='e' means wrong input
{
//get numb2
key = get_key();
writedata(key); //Echo the key pressed to LCD
num2 = get_num(key); //Get int number from char value, it checks for wrong input as well
if(num2!=Error) //if correct input then proceed, num2==Error means wrong input
{
//get equal sign
key = get_key();
writedata(key); //Echo the key pressed to LCD
if(key == '=') //if = is pressed then proceed
{
switch(func) //switch on function
{
case '+': disp_num(num1+num2); break;
case '-': disp_num(num1-num2); break;
case 'x': disp_num(num1*num2); break;
case '/': disp_num(num1/num2); break;
}
}
else //key other then = here means error wrong input
{
if(key == 'C') //if clear screen is pressed then clear screen and reset
writecmd(0x01); //Clear Screen
else
DispError(0); //Display wrong input error
}
}
}
}
}
#include<reg51.h>
#include<string.h>
//Define Macros
#define Error 13 // Any value other than 0 to 9 is good here
//Function declarations
void cct_init(void);
void delay(int);
void lcdinit(void);
void writecmd(int);
void writedata(char);
void writeline(char[]);
void ReturnHome(void);
char READ_SWITCHES(void);
char get_key(void);
int get_num(char);
char get_func(char);
void DispError(int);
void disp_num(int);
void WebsiteLogo();
//*******************
//Pin description
/*
P2 is data bus
P3.7 is RS
P3.6 is E
P1.0 to P1.3 are keypad row outputs
P1.4 to P1.7 are keypad column inputs
*/
//********************
// Define Pins
//********************
sbit RowA = P1^0; //RowA
sbit RowB = P1^1; //RowB
sbit RowC = P1^2; //RowC
sbit RowD = P1^3; //RowD
sbit C1 = P1^4; //Column1
sbit C2 = P1^5; //Column2
sbit C3 = P1^6; //Column3
sbit C4 = P1^7; //Column4
sbit E = P3^6; //E pin for LCD
sbit RS = P3^7; //RS pin for LCD
// ***********************************************************
// Main program
//
int main(void)
{
char key; //key char for keeping record of pressed key
int num1 = 0; //First number
char func = '+'; //Function to be performed among two numbers
int num2 = 0; //Second number
cct_init(); //Make input and output pins as required
lcdinit(); //Initilize LCD
WebsiteLogo();
while(1)
{
WebsiteLogo();
//get numb1
key = get_key();
writecmd(0x01); //clear display
WebsiteLogo();
writedata(key); //Echo the key pressed to LCD
num1 = get_num(key); //Get int number from char value, it checks for wrong input as well
if(num1!=Error) //if correct input then proceed, num1==Error means wrong input
{
//get function
key = get_key();
writedata(key); //Echo the key pressed to LCD
func = get_func(key); //it checks for wrong func
if(func!='e') //if correct input then proceed, func=='e' means wrong input
{
//get numb2
key = get_key();
writedata(key); //Echo the key pressed to LCD
num2 = get_num(key); //Get int number from char value, it checks for wrong input as well
if(num2!=Error) //if correct input then proceed, num2==Error means wrong input
{
//get equal sign
key = get_key();
writedata(key); //Echo the key pressed to LCD
if(key == '=') //if = is pressed then proceed
{
switch(func) //switch on function
{
case '+': disp_num(num1+num2); break;
case '-': disp_num(num1-num2); break;
case 'x': disp_num(num1*num2); break;
case '/': disp_num(num1/num2); break;
}
}
else //key other then = here means error wrong input
{
if(key == 'C') //if clear screen is pressed then clear screen and reset
{
writecmd(0x01); //Clear Screen
WebsiteLogo();
}
else
{
DispError(0); //Display wrong input error
WebsiteLogo();
}
}
}
}
}
}
}
void WebsiteLogo()
{
writecmd(0x95);
writedata('w'); //write
writedata('w'); //write
writedata('w'); //write
writedata('.'); //write
writedata('T'); //write
writedata('h'); //write
writedata('e'); //write
writedata('E'); //write
writedata('n'); //write
writedata('g'); //write
writedata('i'); //write
writedata('n'); //write
writedata('e'); //write
writedata('e'); //write
writedata('r'); //write
writedata('i'); //write
writedata('n'); //write
writedata('g'); //write
writecmd(0xd8);
writedata('P'); //write
writedata('r'); //write
writedata('o'); //write
writedata('j'); //write
writedata('e'); //write
writedata('c'); //write
writedata('t'); //write
writedata('s'); //write
writedata('.'); //write
writedata('c'); //write
writedata('o'); //write
writedata('m'); //write
writecmd(0x80);
}
void cct_init(void)
{
P0 = 0x00; //not used
P1 = 0xf0; //used for generating outputs and taking inputs from Keypad
P2 = 0x00; //used as data port for LCD
P3 = 0x00; //used for RS and E
}
void delay(int a)
{
int i;
for(i=0;i<a;i++); //null statement
}
void writedata(char t)
{
RS = 1; // This is data
P2 = t; //Data transfer
E = 1; // => E = 1
delay(150);
E = 0; // => E = 0
delay(150);
}
void writecmd(int z)
{
RS = 0; // This is command
P2 = z; //Data transfer
E = 1; // => E = 1
delay(150);
E = 0; // => E = 0
delay(150);
}
void lcdinit(void)
{
///////////// Reset process from datasheet /////////
delay(15000);
writecmd(0x30);
delay(4500);
writecmd(0x30);
delay(300);
writecmd(0x30);
delay(650);
/////////////////////////////////////////////////////
writecmd(0x38); //function set
writecmd(0x0c); //display on,cursor off,blink off
writecmd(0x01); //clear display
writecmd(0x06); //entry mode, set increment
}
void ReturnHome(void) /* Return to 0 cursor location */
{
writecmd(0x02);
delay(1500);
WebsiteLogo();
}
void writeline(char Line[])
{
int i;
for(i=0;i<strlen(Line);i++)
{
writedata(Line[i]); /* Write Character */
}
ReturnHome(); /* Return to 0 cursor position */
}
char READ_SWITCHES(void)
{
RowA = 0; RowB = 1; RowC = 1; RowD = 1; //Test Row A
if (C1 == 0) { delay(10000); while (C1==0); return '7'; }
if (C2 == 0) { delay(10000); while (C2==0); return '8'; }
if (C3 == 0) { delay(10000); while (C3==0); return '9'; }
if (C4 == 0) { delay(10000); while (C4==0); return '/'; }
RowA = 1; RowB = 0; RowC = 1; RowD = 1; //Test Row B
if (C1 == 0) { delay(10000); while (C1==0); return '4'; }
if (C2 == 0) { delay(10000); while (C2==0); return '5'; }
if (C3 == 0) { delay(10000); while (C3==0); return '6'; }
if (C4 == 0) { delay(10000); while (C4==0); return 'x'; }
RowA = 1; RowB = 1; RowC = 0; RowD = 1; //Test Row C
if (C1 == 0) { delay(10000); while (C1==0); return '1'; }
if (C2 == 0) { delay(10000); while (C2==0); return '2'; }
if (C3 == 0) { delay(10000); while (C3==0); return '3'; }
if (C4 == 0) { delay(10000); while (C4==0); return '-'; }
RowA = 1; RowB = 1; RowC = 1; RowD = 0; //Test Row D
if (C1 == 0) { delay(10000); while (C1==0); return 'C'; }
if (C2 == 0) { delay(10000); while (C2==0); return '0'; }
if (C3 == 0) { delay(10000); while (C3==0); return '='; }
if (C4 == 0) { delay(10000); while (C4==0); return '+'; }
return 'n'; // Means no key has been pressed
}
char get_key(void) //get key from user
{
char key = 'n'; //assume no key pressed
while(key=='n') //wait untill a key is pressed
key = READ_SWITCHES(); //scan the keys again and again
return key; //when key pressed then return its value
}
int get_num(char ch) //convert char into int
{
switch(ch)
{
case '0': return 0; break;
case '1': return 1; break;
case '2': return 2; break;
case '3': return 3; break;
case '4': return 4; break;
case '5': return 5; break;
case '6': return 6; break;
case '7': return 7; break;
case '8': return 8; break;
case '9': return 9; break;
case 'C': writecmd(0x01); return Error; break; //this is used as a clear screen and then reset by setting error
default: DispError(0); return Error; break; //it means wrong input
}
}
char get_func(char chf) //detects the errors in inputted function
{
if(chf=='C') //if clear screen then clear the LCD and reset
{
writecmd(0x01); //clear display
WebsiteLogo();
return 'e';
}
if( chf!='+' && chf!='-' && chf!='x' && chf!='/' ) //if input is not from allowed funtions then show error
{
DispError(1);
WebsiteLogo();
return 'e';
}
return chf; //function is correct so return the correct function
}
void DispError(int numb) //displays differet error messages
{
writecmd(0x01); //clear display
WebsiteLogo();
switch(numb)
{
case 0: writeline("Wrong Input"); break;
case 1: writeline("Wrong Function"); break;
default: writeline("Wrong Input"); break;
}
}
void disp_num(int numb) //displays number on LCD
{
unsigned char UnitDigit = 0; //It will contain unit digit of numb
unsigned char TenthDigit = 0; //It will contain 10th position digit of numb
if(numb<0)
{
numb = -1*numb; // Make number positive
writedata('-'); // Display a negative sign on LCD
}
TenthDigit = (numb/10); // Findout Tenth Digit
if( TenthDigit != 0) // If it is zero, then don't display
writedata(TenthDigit+0x30); // Make Char of TenthDigit and then display it on LCD
UnitDigit = numb - TenthDigit*10;
writedata(UnitDigit+0x30); // Make Char of UnitDigit and then display it on LCD
}
Anyways, let's come back to keypad, if you wanna read the keypad details then you should read Interfacing of keypad with Arduino in Proteus ISIS as I have mentioned all the basic details about keypad in that tutorial and I am not gonna repeat it. But as a simple recall, keypad works on matrix system like it has 4 columns and 4 rows so we will have total 8 pins through which we are gonna control these 16 buttons. So, let's get started with it.
char READ_SWITCHES(void)
{
RowA = 0; RowB = 1; RowC = 1; RowD = 1; //Test Row A
if (C1 == 0) { delay(10000); while (C1==0); return '7'; }
if (C2 == 0) { delay(10000); while (C2==0); return '8'; }
if (C3 == 0) { delay(10000); while (C3==0); return '9'; }
if (C4 == 0) { delay(10000); while (C4==0); return '/'; }
RowA = 1; RowB = 0; RowC = 1; RowD = 1; //Test Row B
if (C1 == 0) { delay(10000); while (C1==0); return '4'; }
if (C2 == 0) { delay(10000); while (C2==0); return '5'; }
if (C3 == 0) { delay(10000); while (C3==0); return '6'; }
if (C4 == 0) { delay(10000); while (C4==0); return 'x'; }
RowA = 1; RowB = 1; RowC = 0; RowD = 1; //Test Row C
if (C1 == 0) { delay(10000); while (C1==0); return '1'; }
if (C2 == 0) { delay(10000); while (C2==0); return '2'; }
if (C3 == 0) { delay(10000); while (C3==0); return '3'; }
if (C4 == 0) { delay(10000); while (C4==0); return '-'; }
RowA = 1; RowB = 1; RowC = 1; RowD = 0; //Test Row D
if (C1 == 0) { delay(10000); while (C1==0); return 'C'; }
if (C2 == 0) { delay(10000); while (C2==0); return '0'; }
if (C3 == 0) { delay(10000); while (C3==0); return '='; }
if (C4 == 0) { delay(10000); while (C4==0); return '+'; }
return 'n'; // Means no key has been pressed
}
#include<reg51.h>
//Function declarations
void cct_init(void);
void delay(int);
void lcdinit(void);
void writecmd(int);
void writedata(char);
void Return(void);
char READ_SWITCHES(void);
char get_key(void);
//*******************
//Pin description
/*
P2 is data bus
P3.7 is RS
P3.6 is E
P1.0 to P1.3 are keypad row outputs
P1.4 to P1.7 are keypad column inputs
*/
//********************
// Define Pins
//********************
sbit RowA = P1^0; //RowA
sbit RowB = P1^1; //RowB
sbit RowC = P1^2; //RowC
sbit RowD = P1^3; //RowD
sbit C1 = P1^4; //Column1
sbit C2 = P1^5; //Column2
sbit C3 = P1^6; //Column3
sbit C4 = P1^7; //Column4
sbit E = P3^6; //E pin for LCD
sbit RS = P3^7; //RS pin for LCD
// ***********************************************************
// Main program
//
int main(void)
{
char key; // key char for keeping record of pressed key
cct_init(); // Make input and output pins as required
lcdinit(); // Initilize LCD
writecmd(0x95);
writedata('w'); //write
writedata('w'); //write
writedata('w'); //write
writedata('.'); //write
writedata('T'); //write
writedata('h'); //write
writedata('e'); //write
writedata('E'); //write
writedata('n'); //write
writedata('g'); //write
writedata('i'); //write
writedata('n'); //write
writedata('e'); //write
writedata('e'); //write
writedata('r'); //write
writedata('i'); //write
writedata('n'); //write
writedata('g'); //write
writecmd(0xd8);
writedata('P'); //write
writedata('r'); //write
writedata('o'); //write
writedata('j'); //write
writedata('e'); //write
writedata('c'); //write
writedata('t'); //write
writedata('s'); //write
writedata('.'); //write
writedata('c'); //write
writedata('o'); //write
writedata('m'); //write
writecmd(0x80);
while(1)
{
key = get_key(); // Get pressed key
//writecmd(0x01); // Clear screen
writedata(key); // Echo the key pressed to LCD
}
}
void cct_init(void)
{
P0 = 0x00; //not used
P1 = 0xf0; //used for generating outputs and taking inputs from Keypad
P2 = 0x00; //used as data port for LCD
P3 = 0x00; //used for RS and E
}
void delay(int a)
{
int i;
for(i=0;i<a;i++); //null statement
}
void writedata(char t)
{
RS = 1; // This is data
P2 = t; //Data transfer
E = 1; // => E = 1
delay(150);
E = 0; // => E = 0
delay(150);
}
void writecmd(int z)
{
RS = 0; // This is command
P2 = z; //Data transfer
E = 1; // => E = 1
delay(150);
E = 0; // => E = 0
delay(150);
}
void lcdinit(void)
{
///////////// Reset process from datasheet /////////
delay(15000);
writecmd(0x30);
delay(4500);
writecmd(0x30);
delay(300);
writecmd(0x30);
delay(650);
/////////////////////////////////////////////////////
writecmd(0x38); //function set
writecmd(0x0c); //display on,cursor off,blink off
writecmd(0x01); //clear display
writecmd(0x06); //entry mode, set increment
}
void Return(void) //Return to 0 location on LCD
{
writecmd(0x02);
delay(1500);
}
char READ_SWITCHES(void)
{
RowA = 0; RowB = 1; RowC = 1; RowD = 1; //Test Row A
if (C1 == 0) { delay(10000); while (C1==0); return '7'; }
if (C2 == 0) { delay(10000); while (C2==0); return '8'; }
if (C3 == 0) { delay(10000); while (C3==0); return '9'; }
if (C4 == 0) { delay(10000); while (C4==0); return '/'; }
RowA = 1; RowB = 0; RowC = 1; RowD = 1; //Test Row B
if (C1 == 0) { delay(10000); while (C1==0); return '4'; }
if (C2 == 0) { delay(10000); while (C2==0); return '5'; }
if (C3 == 0) { delay(10000); while (C3==0); return '6'; }
if (C4 == 0) { delay(10000); while (C4==0); return 'x'; }
RowA = 1; RowB = 1; RowC = 0; RowD = 1; //Test Row C
if (C1 == 0) { delay(10000); while (C1==0); return '1'; }
if (C2 == 0) { delay(10000); while (C2==0); return '2'; }
if (C3 == 0) { delay(10000); while (C3==0); return '3'; }
if (C4 == 0) { delay(10000); while (C4==0); return '-'; }
RowA = 1; RowB = 1; RowC = 1; RowD = 0; //Test Row D
if (C1 == 0) { delay(10000); while (C1==0); return 'C'; }
if (C2 == 0) { delay(10000); while (C2==0); return '0'; }
if (C3 == 0) { delay(10000); while (C3==0); return '='; }
if (C4 == 0) { delay(10000); while (C4==0); return '+'; }
return 'n'; // Means no key has been pressed
}
char get_key(void) //get key from user
{
char key = 'n'; //assume no key pressed
while(key=='n') //wait untill a key is pressed
key = READ_SWITCHES(); //scan the keys again and again
return key; //when key pressed then return its value
}
LCD is also used almost in every Engineering Project for displaying different values. For example, if you have used the ATM machine, which you must have, then you have seen an LCD there displaying the options to select. Obviously that's quite a big LCD but still LCD. Similarly, all mobile phones are also equipped with LCDs. The LCD we are gonna use in this project is quite small and basic. It is normally known as the 16x2 LCD as it has rows and 2 columns for writing purposes. So, we are gonna interface that LCD with 8051 Microcontroller. The proteus Simulation along with hex file and the programming code in keil uvision 3 is given at the end of this post for download. If you are working with Arduino, then you should have a look at Interfacing of LCD with Arduino. The next level from LCD is Graphical LCD also known as GLCD, so if you wanna know more about that then you should read Interfacing of Arduino with GLCD. So, let's get started with it.
void lcdinit(void)
{
delay(15000);
writecmd(0x30);
delay(4500);
writecmd(0x30);
delay(300);
writecmd(0x30);
delay(650);
writecmd(0x38); //function set
writecmd(0x0c); //display on,cursor off,blink off
writecmd(0x01); //clear display
writecmd(0x06); //entry mode, set increment
}
void writecmd(int z)
{
RS = 0; // => RS = 0
P2 = z; //Data transfer
E = 1; // => E = 1
delay(150);
E = 0; // => E = 0
delay(150);
}
void writedata(char t)
{
RS = 1; // => RS = 1
P2 = t; //Data transfer
E = 1; // => E = 1
delay(150);
E = 0; // => E = 0
delay(150);
}
#include<reg51.h>
//Function declarations
void cct_init(void);
void delay(int);
void lcdinit(void);
void writecmd(int);
void writedata(char);
void ReturnHome(void);
//*******************
//Pin description
/*
P2 is data bus
P1.0 is RS
P1.1 is E
*/
//********************
// Defines Pins
sbit RS = P1^0;
sbit E = P1^1;
// ***********************************************************
// Main program
//
void main(void)
{
cct_init(); //Make all ports zero
lcdinit(); //Initilize LCD
writecmd(0x81);
writedata('w'); //write
writedata('w'); //write
writedata('w'); //write
writedata('.'); //write
writedata('T'); //write
writedata('h'); //write
writedata('e'); //write
writedata('E'); //write
writedata('n'); //write
writedata('g'); //write
writedata('i'); //write
writedata('n'); //write
writedata('e'); //write
writedata('e'); //write
writedata('r'); //write
writedata('i'); //write
writedata('n'); //write
writedata('g'); //write
writecmd(0xc4);
writedata('P'); //write
writedata('r'); //write
writedata('o'); //write
writedata('j'); //write
writedata('e'); //write
writedata('c'); //write
writedata('t'); //write
writedata('s'); //write
writedata('.'); //write
writedata('c'); //write
writedata('o'); //write
writedata('m'); //write
ReturnHome(); //Return to 0 position
while(1)
{
}
}
void cct_init(void)
{
P0 = 0x00; //not used
P1 = 0x00; //not used
P2 = 0x00; //used as data port
P3 = 0x00; //used for generating E and RS
}
void delay(int a)
{
int i;
for(i=0;i<a;i++); //null statement
}
void writedata(char t)
{
RS = 1; // => RS = 1
P2 = t; //Data transfer
E = 1; // => E = 1
delay(150);
E = 0; // => E = 0
delay(150);
}
void writecmd(int z)
{
RS = 0; // => RS = 0
P2 = z; //Data transfer
E = 1; // => E = 1
delay(150);
E = 0; // => E = 0
delay(150);
}
void lcdinit(void)
{
delay(15000);
writecmd(0x30);
delay(4500);
writecmd(0x30);
delay(300);
writecmd(0x30);
delay(650);
writecmd(0x38); //function set
writecmd(0x0c); //display on,cursor off,blink off
writecmd(0x01); //clear display
writecmd(0x06); //entry mode, set increment
}
void ReturnHome(void) //Return to 0 location
{
writecmd(0x02);
delay(1500);
}
Download Proteus Simulation & Code
That's all for today, in the next post I am gonna share how to display custom characters on LCD with 8051 Microcontroller, because till now you can just display the simple characters like alphabets and numbers on it but can't display the custom characters like arrowhead etc. You should have a look at LCD Interfacing with Microcontrollers, where I have combined all tutorials related to LCD. So stay tuned and have fun.Now, today we are gonna go a little further and will have a look at Serial Communication with 8051 Microcontroller and we will also design the simulation of this project in Proteus ISIS software. 8051 Microcontroller also supports Serial port similar to Arduino and PIC Microcontroller. And the communication protocol is exactly the same as its a Serial Port. But obviously the syntax is bit different as we are not working in Arduino software or MPLAB. So let's get started with it.
#include <reg52.h>
#define Baud_rate 0xFD // BAUD RATE 9600
void SerialInitialize(void);
void SendByteSerially(unsigned char);
void cct_init(void);
sbit Appliance1 = P1^0;
sbit Appliance2 = P1^1;
sbit Appliance3 = P1^2;
sbit Appliance4 = P1^3;
sbit Appliance5 = P1^4;
sbit Appliance6 = P1^5;
sbit Appliance7 = P1^6;
sbit Appliance8 = P1^7;
void main()
{
cct_init();
SerialInitialize();
EA = 1;
ES = 1;
while(1) {;}
}
void cct_init(void) //initialize cct
{
P0 = 0x00; //not used
P1 = 0x00; //Used for Appliances
P2 = 0x00; //not used
P3 = 0x03; //used for serial
}
void SerialInitialize(void) // INITIALIZE SERIAL PORT
{
TMOD = 0x20; // Timer 1 IN MODE 2 -AUTO RELOAD TO GENERATE BAUD RATE
SCON = 0x50; // SERIAL MODE 1, 8-DATA BIT 1-START BIT, 1-STOP BIT, REN ENABLED
TH1 = Baud_rate; // LOAD BAUDRATE TO TIMER REGISTER
TR1 = 1; // START TIMER
}
void SendByteSerially(unsigned char serialdata)
{
SBUF = serialdata; // LOAD DATA TO SERIAL BUFFER REGISTER
while(TI == 0); // WAIT UNTIL TRANSMISSION TO COMPLETE
TI = 0; // CLEAR TRANSMISSION INTERRUPT FLAG
}
void serial_ISR (void) interrupt 4
{
//receive character
char chr;
if(RI==1)
{
chr = SBUF;
RI = 0;
}
P0 = ~P0; //Show the data has been updated
switch(chr)
{
case '1': Appliance1 = 1; SendByteSerially('k'); break;
case '2': Appliance2 = 1; SendByteSerially('k'); break;
case '3': Appliance3 = 1; SendByteSerially('k'); break;
case '4': Appliance4 = 1; SendByteSerially('k'); break;
case '5': Appliance5 = 1; SendByteSerially('k'); break;
case '6': Appliance6 = 1; SendByteSerially('k'); break;
case '7': Appliance7 = 1; SendByteSerially('k'); break;
case '8': Appliance8 = 1; SendByteSerially('k'); break;
case 'a': Appliance1 = 0; SendByteSerially('k'); break;
case 'b': Appliance2 = 0; SendByteSerially('k'); break;
case 'c': Appliance3 = 0; SendByteSerially('k'); break;
case 'd': Appliance4 = 0; SendByteSerially('k'); break;
case 'e': Appliance5 = 0; SendByteSerially('k'); break;
case 'f': Appliance6 = 0; SendByteSerially('k'); break;
case 'g': Appliance7 = 0; SendByteSerially('k'); break;
case 'h': Appliance8 = 0; SendByteSerially('k'); break;
default: ; break; //do nothing
}
RI = 0;
}
#include<reg51.h>
sbit LED = P1^0;
void cct_init(void);
void delay(int a);
int main(void)
{
cct_init();
while(1)
{
LED = 0;
delay(30000);
LED = 1;
delay(30000);
}
}
void cct_init(void)
{
P1 = 0x00;
}
void delay(int a)
{
int i;
for(i=0;i<a;i++);
}
Download Proteus Simulation & Keil Code
That's all for today, will come soon with new tutorial on 8051 Microcontroller so stay tuned and have fun. Cheers !!! :)
There are many ways for power factor measurement and today's the method we are gonna use is called zero crossing detection. We will first detect the zero crossing of our signal and then we are gonna do the power factor measurement based on the detection of zero crossing of our voltage and current signal. Seems bit difficultdon't worry we are gonna do everything and in quite full detail so stay with me and enjoy the tutorial. But before going into the details of power factor measurement, let's first discuss the basics of power factor measurement because before that you wont understand a bit.
We have designed this simulation after quite a lot of effort so its not for sale but has a quite small cost of $20 so that engineering students can buy it easily. You can buy the simulation along with hex file and code by clicking on the above button and it will lead you to Product page of this product. So, let get started with it.
We are all quite well aware of these and if you are not then I must say you wont read further and must first get some basic knowledge about these loads. Among these three loads Resistive loads are known as the most decent loads as they don't mess up with the current and just simply let the current pass through it and that's why there's no such power loss in these types of loads. But when it comes to Capacitive or Inductive loads. they are quite disturbing types of loads and hence they don't let the current easily pass through them and slightly distort the current signals. In case of Capactive loads, the current waveform got ahead of the voltage waveform and hence got a lead angle. In other words, current waveform leads the voltage waveform. While in case of Inductive loads, the scenario is quite the opposite. In Inductive loads, current waveform lags the voltage waveform. The below figure shown the difference between these loads output.
Power Factor = Cos ( 60 degrees )
Power Factor = 0.5
void pf_func(){
while(1)
{
if ( PINC.4==1 )
{
TCNT1=0;
TCCR1B = 0x01;
break;
}
else {
continue;
}
}
while(1){
if ( PINC.3 == 1 ){
TCCR1B = 0x00;
g=TCNT1;
break;
}
else {
continue;
}
}
}
int powerfactor(){
k=0;
// To complete number of counts
g=g+1; //Value from the timer
//To convert into seconds
pf=(float)g/1000000;
//To convert into radians
pf=pf*50*360*(3.14/180);
//power facor
pf = cos(pf);
//power factor into percentage
k=abs(ceil(pf*100));
return k;
}
So, buy it and test it and hopefully you will get something big out of it. So that's all about Power Factor Measurement using Atmega. I will post it on Arduino as well quite soon and may be on PIC Microcontroller as well. So, till next tutorial take care !!! :)
I have used Proteus software for the simulation purposes and have use Arduino board as a microcontroller. We know that Proteus doesn't support Arduino but we have a library for it. So, first of all, read Arduino library for Proteus so that you can easily add the Arduino board in your Proteus software and then must also read How to get Hex file from Arduino which we will be uploading in our Proteus software. Its quite easy and you will get it don't in the first attempt. Anyways let's get started with Scrolling Text on LED Matrix 8x8 using Arduino in Proteus ISIS.
#include <MD_MAX72xx.h>
#define MAX_DEVICES 8
#define CLK_PIN 13
#define DATA_PIN 11
#define CS_PIN 10
MD_MAX72XX mx = MD_MAX72XX(DATA_PIN, CLK_PIN, CS_PIN, MAX_DEVICES);
#define SCROLL_DELAY 200
#define CHAR_SPACING 1
#define BUF_SIZE 75
char curMessage[BUF_SIZE];
char newMessage[BUF_SIZE];
uint8_t scrollDataSource(uint8_t dev, MD_MAX72XX::transformType_t t)
{
static char *p = curMessage;
static uint8_t state = 0;
static uint8_t curLen, showLen;
static uint8_t cBuf[8];
uint8_t colData;
switch(state)
{
case 0:
showLen = mx.getChar(*p++, sizeof(cBuf)/sizeof(cBuf[0]), cBuf);
curLen = 0;
state++;
if (*p == '\0')
{
p = curMessage;
}
case 1:
colData = cBuf[curLen++];
if (curLen == showLen)
{
showLen = CHAR_SPACING;
curLen = 0;
state = 2;
}
break;
case 2:
colData = 0;
curLen++;
if (curLen == showLen)
state = 0;
break;
default:
state = 0;
}
return(colData);
}
void scrollText(void)
{
static uint32_t prevTime = 0;
if (millis()-prevTime >= SCROLL_DELAY)
{
mx.transform(MD_MAX72XX::TSR);
prevTime = millis();
}
}
void setup()
{
mx.begin();
mx.setShiftDataInCallback(scrollDataSource);
mx.control(MD_MAX72XX::INTENSITY, 10);
strcpy(curMessage, "www.TheEngineeringProjects.com");
newMessage[0] = '\0';
}
void loop()
{
scrollText();
}
Keypad is used where you need to used numerical buttons or you need to use lots of buttons for sending commands so like in some application I need to use 10 buttons so instead of using separate 10 buttons I would prefer to use keypad instead as it will save a lot of time both in hardware as well as programming. So today we will have a detailed look on How keypad works and How we can Interface keypad with Arduino in Proteus ISIS. Proteus also gives keypad component in its database using which we can easily simulate it in Proteus and can save our time. So first simulate it and then design the hardware. After today's post I will also share an Automatic Lock system project using keypad. Anyways let's get started with Interfacing of Arduino with keypad:
#include <LiquidCrystal.h>
#include <Keypad.h>
const byte ROWS = 4; //four rows
const byte COLS = 3; //three columns
char keys[ROWS][COLS] = {
{'1','2','3'},
{'4','5','6'},
{'7','8','9'},
{'*','0','#'}
};
byte rowPins[ROWS] = {10, 9, 8, 7}; //connect to the row pinouts of the keypad
byte colPins[COLS] = {13, 12, 11}; //connect to the column pinouts of the keypad
// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(A0, A1, A2, A3, A4, A5);
Keypad keypad = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS );
void setup() {
// set up the LCD's number of columns and rows:
lcd.begin(20, 4);
lcd.setCursor(1,2);
lcd.print("www.TheEngineering");
lcd.setCursor(4,3);
lcd.print("Projects.com");
lcd.setCursor(0,0);
}
void loop() {
char key = keypad.getKey();
if (key) {
lcd.print(key);
}
}
Let's first discuss How the Pixy Camera works. Pixy Camera has on board NXP microcontroller which is used for image processing so what we need to do is to let our Pixy Camera remember some objects and whenever this object comes in the range of Pixy camera then it gives output to the microcontroller through SPI protocol. We can use any microcontroller like PIC microcontroller or Arduino etc. We will interface it with Arduino in the coming tutorial but in this tutorial we will have a look at How to train Pixy Camera with Computer using PixyMon. So, let's get started with it.